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Abstract

This document outlines methodologies designed to improve the interface between
the Numerical Propulsion System Simulation framework and various control and
dynamic analyses developed in the Matlab and Simulink environment. Although
NPSS is most commonly used for steady-state modeling, this paper is intended to
supplement the relatively sparse documentation on it’s transient analysis functional-
ity. Matlab has become an extremely popular engineering environment, and better
methodologies are necessary to develop tools that leverage the benefits of these dis-
parate frameworks.
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1 Introduction

Transient analysis is not a new feature of the Numerical Propulsion System Simula-
tion (NPSS), but transient considerations are becoming more pertinent as multidisci-
plinary trade-offs begin to play a larger role in advanced engine designs. This paper
serves to supplement the relatively sparse documentation on transient modeling and
cover the budding convergence between NPSS and Matlab based modeling toolsets.
The following sections explore various design patterns to rapidly develop transient
models. Each approach starts with a base model built with NPSS, and assumes the
reader already has a basic understanding of how to construct a steady-state model.
The second half of the paper focuses on further enhancements required to subse-
quently interface NPSS with Matlab codes. The first method being the simplest
and most straightforward but performance constrained, and the last being the most
abstract. These methods aren’t mutually exclusive and the specific implementation
details could vary greatly based on the designer’s discretion. Basic recommenda-
tions are provided to organize model logic in a format that most easily amenable to
integration with existing Matlab control toolsets.

2 Running NPSS Transiently

This paper assumes a basic understanding of the concepts required for steady-state
engine modeling within NPSS. Foundational concepts are best introduced in the
NPSS user’s guide [1] and other introductory resources. [2] Transient simulations
represent the time-varying behavior of a system by finding a series of solutions at
discrete time steps over a desired time interval. At a high level, the NPSS solver drives
models to a converged state by simultaneously solving a system of equations com-
prised of thermodynamic and user-defined constraints. For most gas-turbine engine
problems, the model cannot be solved by explicitly marching from the front to the
back of the engine cycle. Instead of sequentially solving for each engine component,
an initial guess at the entire model solution is iteratively (implicitly) refined until all
constraints are satisfied. For transient problems, NPSS solves these systems of equa-
tions largely in the same way it handles steady-state solutions. However for transient
systems, certain engine states have “memory” and are driven to a time-dependent in-
tegrated state, rather than simply driving all imbalances to zero (steady-state). This
extra integration step and additional user-defined steps are outlined in the following
sections. At the highest level, a transient model minimally requires the following
considerations beyond steady-state modeling design:

1. Configuring transient solver parameters: solutionMode, time boundary, time
step, tolerances, termination criteria

2. Defining time-varying input/output variables using functions or interpolation
tables, which are are subsequently connected to the solver via independents,
dependents, and constraints

3. Defining transient engine components and initial conditions for transient-specific
properties
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4. Configuring output viewers

These steps are outlined with example code below.

2.1 Solver and Integration Methods

NPSS supports multiple integration types that are outlined in the NPSS users guide.
[1, chap. 7.1] Table 1 summarizes the available methods, with a first-order differential
equation for spool speed used as an example:

Table 1: NPSS Integration Methods

Method Type Solving for Nt2, given Nt2 −Nt1 =
∫ t2
t1

Tnet
I

dt

Euler Explicit Nt2 = Nt1 +
Tnet
I

∣∣∣∣
t1

(t2− t1)

Trapezoidal Implicit Nt2 = Nt1 +
1

2

(
Tnet
I

∣∣∣∣t1 +
Tnet
I

∣∣∣∣t2) (t2− t1)

1st Order Gear Implicit Nt2 = Nt1 +
dN

dt

∣∣∣∣
t2

(t2− t1)

2nd Order Gear Implicit Nt2 = Nt1+

(
1

3

dN

dt

∣∣∣∣t1 +
2

3

dN

dt

∣∣∣∣t2) (t2− t1)

Steady-state iteration may be required for any of these methods, and the choice
between explicit and implicit types comes down to accuracy vs time. Explicit meth-
ods assume the integrand is constant over the specified time interval, therefore in-
tegration is only performed once per time step. Implicit methods perform a sub-
iteration (independent from time) until the predicted state value agrees with the
corrected value within a specified tolerance. NPSS also allows the user to define cus-
tom integration methods using the Integrator class. [1, chap. 15.2] The following
code shows how a model can be initialized for either an implicit or explicit transient
run in NPSS.

setOption( "solutionMode", "TRANSIENT" );
Transient.integrationType = "TRAPEZOIDAL"; //Default Gear 1st order
transient.setup(); //run if changing to (or from) Euler method
initializeHistory(); //run if initial conditions

//differ from most recent transient run

The top level transient solver is of type TransientExecutive, and is named
transient by default. This variable is analogous to the top-level steady-state
“solver” object. The transient object is responsible for setting integration
solver properties including the simulation start, step and stop parameters. [1, chap. 7.5]
[1, chap. 15.1.8] All attributes have a default value except transient.stopTime,
which must be supplied by the user. Over the course of a run, the TransientExecutive
may update these attributes or even overwrite values set by the user. The user can
also preemptively stop a simulation using the quiescence() and terminateCondition()
functions available in the TransientExecutive. The code below demonstrates
how to set time step settings.
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transient { //set as a group
timeStepMethod = "ADAPTIVE";
baseTimeStep= 0.10;
dxTransLimit = 0.05;
maxTimeStep = 0.20;
minTimeStep = 0.01;
stopTime= 3.60;

} //or set individually: transient.stopTime = 3.6;

Before running transiently, the user must first ensure that each engine component
with transient specific attributes is properly initialized. Common components with
special transient properties include, shafts, springs, control volumes, heat exchang-
ers, walls and thermal masses. The following code snippet shows how the special
inertia property may be initialized for a shaft component:

Element Shaft HP_Shaft {

ShaftInputPort HPC, HPT; //list connected turbomachinery
HPX = 100.0; //Horsepower extracted from the shaft
Nmech = 10000; //mechanical speed
inertia = 2; //shaft inertia **required for transient**
//dNqdt = Derivative of speed with respect to time (acceleration)
real dNcqdt; //user defined variable (corrected shaft acceleration)
void postexecute(){

dNcqdt = HP_Shaft.dNqdt / (HPC.Fl_I.Pt / Ambient.Fl_O.Ps);
}

}

In steady-state mode the solver will vary the shaft’s mechanical speed to balance
the input turbine torques (τturb) with the output compressor port torques (τcomp).
In this situation, steady state refers to:

τcomp − τturb = Fnet = ma = 0 (1)

In transient mode there is no guarantee that compressor torques match the tur-
bine torque. In fact, this time-dependent imbalance is often the defining transient
being modeled. To model the effects of changing engine “momentum”, the solver
guesses are varied until the shaft speeds match the speed calculated by integrating
the acceleration derived from the net engine torque.

2.2 Transient Dependents and Constraints

Transient calculations aren’t limited to integrated engine state variables; in fact, any
variable can be configured to change as a function of time. Time-varying inputs, de-
pendents, and constraints must be defined and evaluated at every time step during a
simulation, and therefore cannot simply be assigned a constant value before execut-
ing the run() command as they are in steady-state simulations. Time dependent
variables can be calculated explicitly with piecewise functions for every time step or
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scheduled using built-in table and interpolation routines. The code snippets below
show both of these methods respectively, for defining fuel flow as shown in figure 1.

Figure 1: Example fuel ramp used to drive a transient run

real Ramp( real time, real tstart, real duration, real Y1, real Y2 ) {
real fuel, slope;
if (duration < 0) { duration = 0;}
if (duration) {slope = (Y2 - Y1) / duration;}
if (time <= tstart) { fuel = Y1; }
else if (time > tstart && time < tstart+duration) {

fuel = Y1 + (slope * (time-tstart));
}
else { fuel = Y2; }
return fuel;

}
trans_Condition.eq_rhs = "Ramp( time, 0.2, 3.0, Wf1, Wf2 )";

Or the same function could be built using a table.

real Ramp(real time, real tstart, real duration, real Y1, real Y2) {
real fuel;
Table TB_time(real time) {

time.interp = "linear";
time.extrap = "none"; //edge val used if extrap
time= { 0.00, tstart, tstart+duration}
fuel = { Y1, Y1, Y2}

}
return TB_time(time);

}
trans_Condition.eq_rhs = "Ramp( time, 0.2, 3.0, Wf1, Wf2 )";
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The last line of each of these example functions tells NPSS how to evaluate
the calculated fuel flow input. These dynamic variables can evaluated by creating
a set of independent/dependent equations that are either defined in-line as shown
above, or grouped together as show below. The name trans Condition has no
special meaning to the framework, it’s an arbitrary name chosen for this example.
The transient variable function is set as the right hand side (rhs) of a dependent
equation, with the left hand side (lhs) set to fuel flow. A second variable must be
defined as the independent variable and is varied by the solver until the dependent
equation is satisfied. The independent variable and the eq lhs dependent variable
don’t necessarily have to be the same as shown in this example. However, the
independent variable must be able to influence the value of the dependent eq lhs.

//------------------------------------
// Solver Variable Definition
//------------------------------------
Independent fuel_indep {

varName = "Burner.Wfuel";
}
Dependent trans_Condition {

eq_lhs = "Burner.Wfuel";
eq_rhs = "Ramp( time, 0.2, 3, 0.1, 2.9 )";

//Ramp(time, tstart, duration, Wstart, Wfinish)
}
//------------------------------------
// Transient Solver Setup
//------------------------------------
solver.addIndependent("fuel_indep");
solver.addDependent("trans_Condition");

Multiple dependent equations can be paired with a single independent variable in
the form of constraints. This method is appropriate when the user intends to drive
an output variable transiently, such as thrust, while ensuring no engine constraints
are violated. This behavior can be beneficial for simulating engine limiters in a
controller, and managing competing constraints on several variables.

//------------------------------------
// Constraint Definition
//------------------------------------
Dependent Tt4_Max_Limit {

eq_lhs = "Burner.Fl_O.Tt";
eq_rhs = "3550";

}
Dependent ThrustTarget{

eq_lhs = "PERF.Fn";
eq_rhs = "Ramp( time, 0.2, 5, minThrust, maxThrust )";

}
//------------------------------------
// Transient Solver Setup
//------------------------------------
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//add additional constraint(Name,Min/Max,Priority,Slope);
ThrustTarget.addConstraint("Tt4_Max_Limit","MAX",1,1);
//after adding any constraints, add the equation pair to the solver
solver.addIndependent( "Burner.Wfuel" );
solver.addDependent( "ThrustTarget" );

Although the constraint is defined identically to a dependent variable, it is applied
to a pre-existing independent variable. The example shown above varies fuel flow
to reach a specified thrust target, but only as long as a temperature constraint isn’t
violated. As long as this constraint is activated, fuel flow will follow the temperature
limit and ignore the thrust target. Since numerous constraints can be applied to a
dependent variable, optional arguments can be supplied to specify if a variable is a
minimum or maximum limit. The optional third argument of the addConstraint
method, labeled as ‘priority’ in the code snippet above, determines which limit to
ignore if competing min and max limits are violated. In rare cases, the change in
error is negatively correlated to changes in the independent variable, leading to the
solver to get locked into alternating limits. One such case would be varying fuel flow
to reach a target thrust, with an additional constraint on minimum and maximum
low pressure compressor R-lines. Flipping the ‘MIN’ or ‘MAX’ and the sign of the
‘slope’ arguments can be used to resolve this numerical instability.

A further abstracted method of setting user defined variables can be implemented
using the NPSS supplied solversequence() method. This allows users to simply
append a function to the beginning or end of every time-step calculation loop and
evaluate any variable to a specified value.

//------------------------------------
// Solver Variable Definition
//------------------------------------
Independent fuel_indep {

varName = "Burner.Wfuel";
}
Dependent trans_Condition {

eq_lhs = "Burner.Wfuel";
eq_rhs = "RampOutput"; //needs to be recalculated every time step

}
//------------------------------------
// Transient Solver Setup
//------------------------------------
solver.addIndependent("fuel_indep");
solver.addDependent("trans_Condition");

solver.presolverSequence("fuelCalc"); //backwards compatible alias
//solver.preExecutionSequence("fuelCalc"); //equivalent statement
//------------------------------------
// fuelCalc function definition
//------------------------------------
void fuelCalc(){ //this is run before every time step

real Wf1 = 0.1;
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real Wf2 = 2.9;
real RampOutput = Ramp( time, 0.2, 3.0, Wf1, Wf2 ); // eq_rhs

}

This code block performs a functionally equivalent operation to the first exam-
ple snippet of this section. Although the computational differences are minor, this
provides the user with another option for organizing logic. From an organizational
standpoint, it may be desirable to fully separate concerns by keeping certain logic
separate from the model itself. Example code demonstrating all of these methods
can be found in appendix A.1.

2.3 Transient Output

In order to capture the engine state after convergence of every time step, standard
viewers or custom functions can be invoked for transient cases using the solver
.postExecutionSequence method. This method takes an array of strings that
correspond to viewer objects or function names. If a PageViewer or DataViewer is
called, it will automatically invoke the display() method of these objects, if a
CaseViewer is called, only the update() method will be invoked. If an implicit
integration method is used, the viewer will only update after each sub-iteration is
fully converged.

//------------------------------------
// Transient Row Viewer
//------------------------------------
OutFileStream transientStream { filename = "tout"; }
DataViewer CaseRowViewer transientTrace {

titleBody = " ";
titleVars = { };
variableList = {

"time: ??.???? ",
"Amb0.W : ???.?? = Air Flow",
"HPC.Fl_O.Pt : ????.?? = Pt3",
"HPC.Fl_O.Tt : ????.?? = Tt3",
"LPshaft.Nmech : ??????.?? = LPspeed",

};
pageWidth = 132;
pageHeight = 0.;
outStreamHandle = "transientStream";

}
//------------------------------------
// Call to Viewer
//------------------------------------
solver.postExecutionSequence = { "transientTrace" }; //CaseViewer function

//ˆexecutes after solver convergence at each time step
run();
transientTrace.display(); //write viewer variables to it’s output file

Additional viewer reference material can be found in [1, chap. 7.2.2, 12, 15.3.1]
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2.4 Transient Run Files

It’s generally recommended to organize each of these steps in separate files or folders
to better manage complexity. Each aspect is then generally orchestrated in a run
file containing numerous simulations chained together. After on-design steady-state
engine sizing occurs, engine state boundaries can be established by running multiple
off-design power settings until key engine constraints become active. Generating large
tables of equilibrated or ‘trimmed’ engine points throughout the flight envelopes
ensures that transients can be run from any starting condition without starting
imbalances. In the following example, a steady-state case is first run to initialize
the state of the engine and to determine fuel flow bounds on a transient input driver
based on user-provided thrust targets. A transient case is then run from t=0 to t=0.6,
paused, then resumed to t=3.6. Finally, a new transient run clears the previously
integrated engine states and runs a fresh case from t=0 to t=2.4.

//------------------------------------
// Run Two Steady State Cases
//------------------------------------
setOption( "solutionMode", "STEADY_STATE" );
PERF.FnTarget = MinThrustTarget;
run(); // Run once
Wf1 = Burner.Wfuel // Save calculated fuel flow
PERF.FnTarget = MaxThrustTarget;
run(); // Run again
Wf2 = Burner.Wfuel // Save calculated fuel flow

//------------------------------------
//Run Two Transient Cases
//------------------------------------
trans_Condition.eq_rhs = "Ramp( time, 0.2, 3.0, Wf1, Wf2 )";
setOption( "solutionMode", "TRANSIENT" );
initializeHistory(); // initialize variable history
transient.baseTimeStep = 0.10;
transient.stopTime = 0.60;
run(); // t = 0 -> 0.6
transient.stopTime = 3.60; // extend same transient run
run(); // t = 0.6 -> 3.6

transient.clear();
trans_Condition.eq_rhs = "Ramp( time, 0.2, 5.0, Wf1, Wf2 )";
solver.forceNewJacobian = TRUE;
transient.setup();
time = 0.;
transient.stopTime = 2.40;
run(); // new transient case, t = 0 -> 2.4
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2.5 Advanced Dynamics Modeling

Users can find additional transient solver options in the NPSS user’s guide [1, chap. 18]
for simulating more advanced engine dynamics such as custom first order-lags, adap-
tive time-stepping, custom integrators or predictor calculations.

While possible to implement in NPSS, many advanced modeling processes can
benefit from specialized tool-sets in other development environments such as Mat-
lab/Simulink. The following sections outline strategies for interfacing NPSS with
Matlab to take advantage of Matlab’s large ecosystem of tools.

3 Passing Data Between NPSS and Matlab

There are several different ways to pass information between simulations running in
NPSS and Matlab/Simulink. There is no silver bullet approach, each solution fits a
different use case.

3.1 Raw File I/O

The most simplistic and straightforward method for passing information is automated
input/output (I/O) file passing and batched system calls. File I/O is undesirable
from a performance aspect, but can be acceptable if the total number of round-trips
between NPSS and Matlab are minimized. This method is suitable for upfront en-
gine initialization calculations, and functions where programming simplicity is more
important than computational efficiency.

A single round-trip generally involves the following steps:

Figure 2: Example DataFlow for File I/O

1. Specify run cases, programatically writing the necessary batch and input files
[Matlab]

2. Transfer cases to the NPSS model directory [Matlab→ NPSS]

3. Execute NPSS Run Cases, saving output variables of interest in a Matlab
readable syntax [NPSS]

4. Transfer output files back to Matlab where they can be loaded into the working
directory [NPSS →Matlab]
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Matlab can dynamically write input/run scripts, which are subsequently copied
to the NPSS directory and executed from a system call. The following Matlab snippet
generates an input file

inputFile = ’NPSS_setpoint.input’; %name of input file to be written
inputPath = ’..\path2folder\’; %path to write to

setpointVector = [10000.0, 10952.381, 11904.762, 12857.143, 13809.5238,
14761.9048, 15714.2857, 16666.6667, 17619.0476, 18571.4286,
19523.8095, 20476.1905, 21428.5714, 22380.9524, 23333.3333,
24285.7143, 25238.0952, 26190.4762, 26500.0000];

minS = min(setpointVector);
maxS = max(setpointVector);
fileID = fopen([inputPath inputFile],’w’);
fprintf(fileID,’%% setpoints between %10.4f and %10.4f \n’,minS,maxS);
dlmwrite([inputPath inputFile],’real Fn_targets[]={’,’delimiter’,’’,’-append’)
dlmwrite([inputPath inputFile],setpointVector,’-append’)
dlmwrite([inputPath inputFile],’};’,’-append’,’delimiter’,’’)
fclose(fileID);

which will create the following file, called NPSS setpoint.input

% setpoints between 10000.0000 and 26500.0000
real Fn_targets[]={

10000,10952,11905,12857,13810,
14762,15714,16667,17619,18571,
19524,20476,21429,22381,23333,
24286,25238,26190,26500

};

This method works best when adhering to a few heuristics. Firstly, organize
an engine repository into sub-folders. Although it’s possible to contain everything
within a single file or root folder, separating code improves readability and simplifies
automated file operations when they can be limited to a smaller subset of files. Table
2 shows one such way to organize files.

Folder Name Folder Function

Maps Off-design performance maps and large table data

Inputs Input files generated from external sources and subsequently fed into NPSS

Outputs Outputs files generated by NPSS

Run Files used to orchestrate run cases

View All viewer functions used to generate outputs

Src All other model and function source files

Table 2: An opinionated folder scaffolding for NPSS engine repositories

Breaking down folders, files, and functions into smaller pieces also improves code-
reuse, which is generally desired for any code-base. This allows many general use
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functions to act as a common core shared between multiple engine architectures.
Separating logic in this manner allows the programmer to better follow the third

recommended heuristic of passing the minimum amount of information necessary
between codes. If inputs are isolated in their own file it’s much easer for external
codes to pass in files containing only the necessary data, while keeping any logic (and
therefore potential side-effects) separated.

External codes sometimes require more control than just specifying NPSS input
data. If run cases must be dynamically configured during execution, NPSS provides
command line arguments [1, chap. 2.1] including preprocessor variables that can be
used to invoke optional code. Example code demonstrating these methods can be
found in appendix A.1.

It is possible to drive a closed-loop NPSS transient from an external code by
passing files between programs after every single time step. However, due to it’s in-
efficiency it is highly advisable to revert to memory-wrapped execution when driving
a transient from Matlab.

3.2 Compiled S-function (Memory-wrapped simulations)

A dynamically-linked library (dll) is included with NPSS and can be used within a
level 2 S-function in Simulink. The NPSSSfunction.dll requires a full NPSS v1.6.X
release distribution, as well a 32-bit(only) Matlab distribution from R2007b through
R2010a. Future versions of Matlab disable the operability of dll’s, in favor of strictly
enforcing the use of custom Matlab Executable MEX files. The dll is not compatible
with the Mac operating system, or any 64-bit version of Matlab. As of April 2014,
NPSS version 2.7.1 VC10 has been recompiled from source as a MEX file. This
version of the S-function is only compatible between programs supporting the same
resolution. So the 64-bit MEX is only compatible with with 64-bit NPSS, and has
only been tested on Matlab 2012b, and Matlab 2014b. A separately compiled MEX
file is required for 32-bit Matlab and NPSS distributions. These new wrappers are
not backwards compatible to NPSS version 1.6.X The version compatibility is shown
in table 3.

Matlab Version NPSS v1.6.X NPSS v2.7.X 32-bit NPSS v2.7.X 64-bit

32-bit DLL (R2007b-R2010a) MEXw32 (R2010a-R2014b) Not Supported

64-bit Not Supported Not Supported MEXw64 (R2012b-R2014b)

Table 3: S-function compatibility chart

The MEX version requires a few extra steps as outlined in the user‘s guide provided
in each NPSS distribution. [3] This involves invoking Matlab from the command line,
and adding the NPSS distribution bin file to both the computer PATH and Matlab
path.

The S-function encapsulates NPSS within a Simulink block and can be integrated
into a time-varying system using the same conventions as conventional Simulink
component blocks. Any standard output stdout from NPSS is redirected to the
Matlab command window during execution. It’s recommended to print any user-
relevant error and dialog messages to stdout or pipe them to a log file to aid in
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debugging.

The S-function requires two arguments, as shown in fig. 3. The S-function name
refers to the name of the dll and the S-function parameter must point to a user-
defined configuration file enclosed in single quotes (‘’).

Figure 3: S Function Parameter Dialog Box

This configuration bash file includes all necessary paths, global environment vari-
ables, and specifies which engine variables to expose to Simulink. In essence, this file
defines the which engine variables can be controlled at the boundary of the NPSS
S-function black box.

commandLine = "-I. -I C:/path/NPSS_dir/bin";
commandLine += " -I C:/path/NPSS_dir/InterpIncludes";
commandLine += " -I C:/path/NPSS_dir/InterpComponents";
commandLine += " -I C:/path/NPSS_dir/DLMComponents/nt";
commandLine += " -I C:/path/NPSS_dir/MetaData";
commandLine += " -I C:/path2/NPSSengine/run";
commandLine += " -I C:/path2/NPSSengine/src";
commandLine += " -I C:/path2/NPSSengine/maps";
commandLine += " C:/path2/NPSSengine/run/engine.run -DFlag1 -DFlag2";

SimulinkInPortMapper inPort1 {
vars = { "Burner.Wfuel" }

}

timeStep = 0.02;

SimulinkOutPortMapper outPort1 {
vars = {
"LP_Shaft.Nmech", "HP_Shaft.Nmech", "FS_3.Ps", "FS_4.Pt", "FS_9.Tt"
}
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}

SimulinkOutPortMapper outPort2 {
vars = {

"Perf.myEPR", "Perf.myFn", "Perf.Wfuel", "HPC.SMN", "HPC.SMW"
}

}

This particular example includes multiple folders on the path for the NPSS dis-
tribution itself, as well as paths within the engine folder. The final command line
string runs a batch run file and two optional preprocessor flags called DFlag1 and
DFlag2. If not explicitly added to the config file, the engine.run file must also
set the NPSS TOP, NPSS DEV TOP, NPSS CONFIG, and NPSS TOP environmental
variables.

In this example, the config file will create an S-function block with 1 input port,
and 2 output ports each containing 5 muxed signals. Signals fed into this input port
will continuously update the value of the NPSS defined Burner.Wfuel variable
during the transient execution. Similarly, all the specified outputs will be fed as
output signals of the Simulink block. Multiple variables defined within a single
output port are muxed into a single signal bus.

In-depth examples of the S-function can be found in the source code for the
Tool for Turbine Engine Closed-loop Transient Analysis program (TTECTrA). [4]
The S-function was used extensively for this project under NASA’s Advanced Air
Transportation Technologies (AATT) Project. The tool is intended to automatically
calculate a first-cut approximation of a closed loop controller for any given transient
engine model. The program runs multiple internally wrapped NPSS transient sce-
narios with fuel flow dictated by the Simulink model and uses the returned output
to select appropriate controller parameters. Fig 4 shows the NPSS engine response
to a fuel ramp controlled by the outer Simulink program.

Figure 4: NPSS transient engine response to a Simulink commanded fuel flow
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3.3 Source-to-Source Translation

The most abstract method of generating a transient model from NPSS is best de-
scribed as “Source-to-Source Translation” (SST), which is the process of converting
one high level model to another. This pattern is appropriate when developing a
transient engine model that may be completely separate, but originally derived, from
NPSS.

Alternate thermodynamic cycle analysis tools to NPSS such as TMATS [5] [6],
and PyCycle [7] contain the same basic engine components as NPSS. Therefore,
assuming an engine model is comprised entirely of thermodynamic components that
exist in both tools, it’s possible to automatically convert an engine from one code to
another. A source-to-source compiler capable of parsing a NPSS model code could
automatically instantiate an equivalent version in an alternate analysis tool.

SST could significantly reduce development time and tedious error-prone manual
model translation. Rather than forcing all developers to use the same code-base, this
method allows engines to be modeled in each environment’s native language. Follow-
ing the “write once, run everywhere” paradigm, this process can significantly reduce
development time, which is vital for maintaining code flexibility and adaptability
across languages.

This methodology is demonstrated with the Supersonic Component Engine Model
(SCEM), which is a dynamic engine model developed to better understand the cou-
pling between propulsion and aero-servo-elastic modes of long slender supersonic
vehicles. [8] [9] The model is designed to extend a steady-state NPSS model and
better capture high bandwidth dynamics associated with large component volumes.
When the porting was first attempted by hand, development proved to be challenging
largely due to the number of engine components involved. Many of the challenges
were associated with human-errors from manually replicating the model in a new
language.

Figure 5: A legacy version of SCEM built manually
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Similar to NPSS, a library of generic SCEM engine elements was composed to
handle many combinations and engine architectures. Although the SCEM solver is
fundamentally different than the solver used by NPSS, both models were comprised of
the same basic thermodynamic elements, linked together in the same order. In order
to automate the generation of an analogous NPSS model, both tools followed the
same object-oriented nature, rather than the procedural paradigm generally used in
Matlab. These custom Matlab classes use object-oriented features that first became
available in the R2008a revision of Matlab [10] By aligning the framework paradigms
between NPSS and SCEM, it became possible to create a parallel Matlab “classes”
for each standard element contained within NPSS.

These Matlab objects parse common attributes within NPSS components, dy-
namically configuring the analogous Simulink block to match. This automates the
conversion of any NPSS model into an analogous Matlab model, greatly reducing the
opportunity for human error and simplifying the process of extending the model.

Figure 6: A version of SCEM built automatically via SST

Since NPSS engine models can vary widely in implementation details, a SST
is limited to recognizing standard elements, solver variables, and connections. A
NPSS developer can also include special attributes within standard components that
would be ignored by NPSS, but parsed by the SST transcompiler to provide addi-
tional context to the Matlab equivalent engine. The following example code shows a
Matlab position variable that could be ignored by NPSS, but parsed by a Matlab
counterpart.

Element Shaft HP_Shaft {

ShaftInputPort HPC, HPT; //list connected turbomachinery
HPX = 100.0; //Horsepower extracted from the shaft
Nmech = 10000; //mechanical speed
inertia = 2; //shaft inertia **required for transient**

real Matlab_position = 7; //ignored by NPSS,
//but potentially meaningful to a SST parser

}
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4 Final Remarks

The aforementioned approaches are by no means an exhaustive list, but provide new
users with a starting point for developing complex transient engine models where
development can be distributed across NPSS and Matlab.

The varying merits, complexities, and pitfalls of each approach indicate that there
is no silver-bullet approach to unifying these disparate development tools. The best
method is dependent on the problem, and even a hybrid combination of multiple
methods can be implemented. As an example, a highly complex NPSS model could
be partially transcompiled into a native Matlab model, with any custom components
encapsulated within their own isolated S-functions. This same hypothetical model
could also perform a one-time initialization involving data passed using basic file
I/O. Beyond developing the API, it is also up to the developers of each tool to agree
upon the level of control each program is responsible for. Often times tools have
overlapping capabilities, so the developers must take extra care to avoid conflicting
or competing logic between each tool-set.

Developing standard modeling and message passing practices and approaches are
necessary to unify code-bases and development efforts. Investing upfront effort to
reduce long-term development time and complexity can ultimately lead to better
overall designs.
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Appendix A

Source Code

A.1 TTECTrA

The entire source code for TTECTrA can be found on github at:
<https://github.com/nasa/TTECTrA>
This tool makes extensive use of both file passing and the S-function.
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