2,413 research outputs found

    1.3 mm Polarized emission in the circumstellar disk of a massive protostar

    Get PDF
    We present the first resolved observations of the 1.3 mm polarized emission from the disk-like structure surrounding the high-mass protostar Cepheus A HW2. These CARMA data partially resolve the dust polarization, suggesting a uniform morphology of polarization vectors with an average position angle of 57° ± 6° and an average polarization fraction of 2.0% ± 0.4%. The distribution of the polarization vectors can be attributed to (1) the direct emission of magnetically aligned grains of dust by a uniform magnetic field, or (2) the pattern produced by the scattering of an inclined disk. We show that both models can explain the observations, and perhaps a combination of the two mechanisms produces the polarized emission. A third model including a toroidal magnetic field does not match the observations. Assuming scattering is the polarization mechanism, these observations suggest that during the first few 104 years of high-mass star formation, grain sizes can grow from1 mm to several 10s μm.Fil: Fernandez Lopez, Manuel. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomia; ArgentinaFil: Stephens, I. W.. Harvard-Smithsonian Center for Astrophysics; Estados Unidos. Boston University; Estados Unidos. University of Illinois; Estados UnidosFil: Girart, J. M.. Harvard-Smithsonian Center for Astrophysics; Estados Unidos. Institut de Ciències de l’Espai; EspañaFil: Looney, L.. University of Illinois; Estados UnidosFil: Curiel, S.. Universidad Nacional Autónoma de México; MéxicoFil: Segura Cox, D.. University of Illinois; Estados UnidosFil: Eswaraiah, C.. National Tsing Hua University; República de ChinaFil: Lai, S. P.. National Tsing Hua University; República de Chin

    A new radiative cooling curve based on an up to date plasma emission code

    Full text link
    This work presents a new plasma cooling curve that is calculated using the SPEX package. We compare our cooling rates to those in previous works, and implement the new cooling function in the grid-adaptive framework `AMRVAC'. Contributions to the cooling rate by the individual elements are given, to allow for the creation of cooling curves tailored to specific abundance requirements. In some situations, it is important to be able to include radiative losses in the hydrodynamics. The enhanced compression ratio can trigger instabilities (such as the Vishniac thin-shell instability) that would otherwise be absent. For gas with temperatures below 10,000 K, the cooling time becomes very long and does not affect the gas on the timescales that are generally of interest for hydrodynamical simulations of circumstellar plasmas. However, above this temperature, a significant fraction of the elements is ionised, and the cooling rate increases by a factor 1000 relative to lower temperature plasmas.Comment: 11 pages, 6 figures. Typos fixed to match version on A&A 'forthcoming' website. Tables in text format online available at http://www.phys.uu.nl/~schure/coolin

    Finding substructures in protostellar disks in Ophiuchus

    Full text link
    High-resolution, millimeter observations of disks at the protoplanetary stage reveal substructures such as gaps, rings, arcs, spirals, and cavities. While many protoplanetary disks host such substructures, only a few at the younger protostellar stage have shown similar features. We present a detailed search for early disk substructures in ALMA 1.3 and 0.87~mm observations of ten protostellar disks in the Ophiuchus star-forming region. Of this sample, four disks have identified substructure, two appear to be smooth disks, and four are considered ambiguous. The structured disks have wide Gaussian-like rings (σR/Rdisk∼0.26\sigma_R/R_{\mathrm{disk}}\sim0.26) with low contrasts (C<0.2C<0.2) above a smooth disk profile, in comparison to protoplanetary disks where rings tend to be narrow and have a wide variety of contrasts (σR/Rdisk∼0.08\sigma_R/R_{\mathrm{disk}}\sim0.08 and CC ranges from 0−10-1). The four protostellar disks with the identified substructures are among the brightest sources in the Ophiuchus sample, in agreement with trends observed for protoplanetary disks. These observations indicate that substructures in protostellar disks may be common in brighter disks. The presence of substructures at the earliest stages suggests an early start for dust grain growth and, subsequently, planet formation. The evolution of these protostellar substructures is hypothesized in two potential pathways: (1) the rings are the sites of early planet formation, and the later observed protoplanetary disk ring-gap pairs are secondary features, or (2) the rings evolve over the disk lifetime to become those observed at the protoplanetary disk stage.Comment: Accepted by ApJ, 22 pages, 10 figure

    CARMA Large Area Star Formation Survey: Observational Analysis of Filaments in the Serpens South Molecular Cloud

    Get PDF
    We present the N2H+(J=1-0) map of the Serpens South molecular cloud obtained as part of the CARMA Large Area Star Formation Survey (CLASSy). The observations cover 250 square arcminutes and fully sample structures from 3000 AU to 3 pc with a velocity resolution of 0.16 km/s, and they can be used to constrain the origin and evolution of molecular cloud filaments. The spatial distribution of the N2H+ emission is characterized by long filaments that resemble those observed in the dust continuum emission by Herschel. However, the gas filaments are typically narrower such that, in some cases, two or three quasi-parallel N2H+ filaments comprise a single observed dust continuum filament. The difference between the dust and gas filament widths casts doubt on Herschel ability to resolve the Serpens South filaments. Some molecular filaments show velocity gradients along their major axis, and two are characterized by a steep velocity gradient in the direction perpendicular to the filament axis. The observed velocity gradient along one of these filaments was previously postulated as evidence for mass infall toward the central cluster, but these kind of gradients can be interpreted as projection of large-scale turbulence.Comment: 12 pages, 4 figures, published in ApJL (July 2014

    Flow of gas detected from beyond the filaments to protostellar scales in Barnard 5

    Full text link
    Infall of gas from outside natal cores has proven to feed protostars after the main accretion phase (Class 0). This changes our view of star formation to a picture that includes asymmetric accretion (streamers), and a larger role of the environment. However, the connection between streamers and the filaments that prevail in star-forming regions is unknown. We investigate the flow of material toward the filaments within Barnard 5 (B5) and the infall from the envelope to the protostellar disk of the embedded protostar B5-IRS1. Our goal is to follow the flow of material from the larger, dense core scale, to the protostellar disk scale. We present new HC3_3N line data from the NOEMA and 30m telescopes covering the coherence zone of B5, together with ALMA H2_2CO and C18^{18}O maps toward the protostellar envelope. We fit multiple Gaussian components to the lines so as to decompose their individual physical components. We investigate the HC3_3N velocity gradients to determine the direction of chemically-fresh gas flow. At envelope scales, we use a clustering algorithm to disentangle the different kinematic components within H2_2CO emission. At dense core scales, HC3_3N traces the infall from the B5 region toward the filaments. HC3_3N velocity gradients are consistent with accretion toward the filament spines plus flow along them. We found a ∼2800\sim2800 au streamer in H2_2CO emission which is blueshifted with respect to the protostar and deposits gas at outer disk scales. The strongest velocity gradients at large scales curve toward the position of the streamer at small scales, suggesting a connection between both flows. Our analysis suggests that the gas can flow from the dense core to the protostar. This implies that the mass available for a protostar is not limited to its envelope, and can receiving chemically-unprocessed gas after the main accretion phase.Comment: 25 pages, 27 figures, accepted for publication on Astronomy and Astrophysics. The scripts used for analysis can be seen at https://github.com/tere-valdivia/Barnard_5_infal

    CARMA Large Area Star Formation Survey: Project Overview with Analysis of Dense Gas Structure and Kinematics in Barnard 1

    Get PDF
    We present details of the CARMA Large Area Star Formation Survey (CLASSy), while focusing on observations of Barnard 1. CLASSy is a CARMA Key Project that spectrally imaged N2H+, HCO+, and HCN (J=1-0 transitions) across over 800 square arcminutes of the Perseus and Serpens Molecular Clouds. The observations have angular resolution near 7" and spectral resolution near 0.16 km/s. We imaged ~150 square arcminutes of Barnard 1, focusing on the main core, and the B1 Ridge and clumps to its southwest. N2H+ shows the strongest emission, with morphology similar to cool dust in the region, while HCO+ and HCN trace several molecular outflows from a collection of protostars in the main core. We identify a range of kinematic complexity, with N2H+ velocity dispersions ranging from ~0.05-0.50 km/s across the field. Simultaneous continuum mapping at 3 mm reveals six compact object detections, three of which are new detections. A new non-binary dendrogram algorithm is used to analyze dense gas structures in the N2H+ position-position-velocity (PPV) cube. The projected sizes of dendrogram-identified structures range from about 0.01-0.34 pc. Size-linewidth relations using those structures show that non-thermal line-of-sight velocity dispersion varies weakly with projected size, while rms variation in the centroid velocity rises steeply with projected size. Comparing these relations, we propose that all dense gas structures in Barnard 1 have comparable depths into the sky, around 0.1-0.2 pc; this suggests that over-dense, parsec-scale regions within molecular clouds are better described as flattened structures rather than spherical collections of gas. Science-ready PPV cubes for Barnard 1 molecular emission are available for download.Comment: Accepted to The Astrophysical Journal (ApJ), 51 pages, 27 figures (some with reduced resolution in this preprint); Project website is at http://carma.astro.umd.edu/class

    Kinematic Analysis of a Protostellar Multiple System: Measuring the Protostar Masses and Assessing Gravitational Instability in the Disks of L1448 IRS3B and L1448 IRS3A

    Full text link
    We present new Atacama Large Millimeter/submillimeter Array (ALMA) observations towards a compact (230~au separation) triple protostar system, L1448 IRS3B, at 879~\micron with \contbeam~resolution. Spiral arm structure within the circum-multiple disk is well resolved in dust continuum toward IRS3B, and we detect the known wide (2300~au) companion, IRS3A, also resolving possible spiral substructure. Using dense gas tracers, C17O, H13CO++, and H13CN, we resolve the Keplerian rotation for both the circum-triple disk in IRS3B and the disk around IRS3A. Furthermore, we use the molecular line kinematic data and radiative transfer modeling of the molecular line emission to confirm that the disks are in Keplerian rotation with fitted masses of 1.19−0.07+0.131.19^{+0.13}_{-0.07} for IRS3B-ab, 1.51−0.07+0.061.51^{+0.06}_{-0.07}~Msun for IRS3A, and place an upper limit on the central protostar mass for the tertiary IRS3B-c of 0.2~Msun. We measure the mass of the fragmenting disk of IRS3B to be 0.29~Msun from the dust continuum emission of the circum-multiple disk and estimate the mass of the clump surrounding IRS3B-c to be 0.07~Msun. We also find that the disk around IRS3A has a mass of 0.04~Msun. By analyzing the Toomre~Q parameter, we find the IRS3A circumstellar disk is gravitationally stable (Q>>5), while the IRS3B disk is consistent with a gravitationally unstable disk (Q<<1) between the radii 200-500~au. This coincides with the location of the spiral arms and the tertiary companion IRS3B-c, supporting the hypothesis that IRS3B-c was formed in situ via fragmentation of a gravitationally unstable disk
    • …
    corecore