94 research outputs found

    Socio-emotional Effects of the Pandemic on Teachers in the City of Pichilemu: Speech Analysis

    Get PDF
    The objective of this study is to evaluate the socio-emotional impact of the pandemic in a group of teachers from the city of Pichilemu in the Libertador Bernardo O'Higgins Region in Chile, through discourse analysis establishing the degree of impact on their quality of teaching life as a result of the restriction measures imposed by the health authority added to the implementation of distance education. The changes experienced and their effects at the social, family and work level produced by the suspension of face-to-face classes and the implementation of various digital platforms to continue the educational process are analyzed. The research is carried out from the qualitative paradigm through the Grounded Theory methodology and the constant comparative method through the analysis of in-depth interviews with the use of the ATLAS.ti software. Convenience sampling was used with the participation of 5 teachers with whom the theoretical saturation of the sample occurred. The results obtained from the qualitative analysis of the data generated ten codes and the emergence of four families or categories called emotional effects, resilience, socio-family effects and criticism of institutional management. The health crisis and the restriction of mobility provoke in the interviewees a state of mental, social and physical vulnerability; uncertainty due to the lack of certainty about the future, development of resilience, capacity for self-criticism and adaptive response to the new setting

    Perfil de competencias profesionales para docentes en contextos escolares vulnerables. Estudio de caso

    Get PDF
    76 p.Los contextos escolares vulnerables requieren del desempeño de docentes con competencias profesionales adecuadas para abordar los aprendizajes que demanda el contexto social y escolar. Para ello, esta investigación aborda una propuesta de diseño del perfil de competencias profesionales para los docentes en una institución escolar pública con un 96% de vulnerabilidad escolar en la ciudad de Talca, Región del Maule. Utilizando una muestra de 36 docentes. Se utiliza un enfoque mixto, de alcance descriptivo con un diseño de estudio de caso. Se aplica la metodología DACUM y un cuestionario a los docentes y directivos. Los resultados indican cuatro competencias genéricas y cuatro específicas distribuidas en las dimensiones pedagógicas, afectiva, social y personal, determinando los saberes personales de los docentes como esenciales para la construcción del perfil profesional

    Ozone and volatile organic compounds in the metropolitan area of Lima-Callao, Peru

    Get PDF
    This study analyzes ozone formation in the metropolitan area of Lima-Callao as a function of meteorological patterns and the concentrations of nitrogen oxides and reactive organic gases. The study area is located on the west coast of South America (12°S) in an upwelling region that is markedly affected by the Southeast Pacific anticyclone. The vertical stability and diurnal evolution of the mixing layer were analyzed from radiosondes launched daily during 1992–2014 and from two intensive campaigns in 2009. Vertical profiles show that during June–November, the subsidence inversion base ranges from 0.6 to 0.9 km above sea level (asl). In contrast, during December–May, subsidence inversion dissipates, leading to weak surface inversions from 0.1 to 0.6 km asl. At the surface level, compliance with the ozone standard of 51 parts per billion by volume (ppbv) is explained by the marine boundary layer effect and by strong inhibition of ozone formation due to titration with nitric oxide. Day-of-the-week variations in ozone and nitrogen oxides suggest a VOC-limited ozone-formation regime in the atmosphere of Lima. Furthermore, the pattern of C6–C12 species indicates that gasoline-powered vehicles are the main source of volatile organic compounds (VOCs), whereas the species with the greatest ozone-forming potential corresponded to the sum of the isomers m- and p-xylene. Mean benzene concentrations exceeded the standard of 0.63 ppbv, reaching 1.2 ppbv east of Lima. Nevertheless, the cancer risk associated with the inhalation of benzene was deemed acceptable, according to USEPA and WHO criteria

    La participación social y la protección del patrimonio

    Get PDF
    Los contenidos de este artículo se basan en antecedentes recogidos para la formulación del marco teórico del proyecto FONDECYT N° 1040998, titulado "Identidad, memoria colectiva y participación en el proceso de transformaciones contemporáneas del asentamiento minero de Lota Alto", que está en proceso de ejecución por académicos de la Universidad de Concepción y la Universidad del Bío-Bío

    Combined technique as first approach in mechanical thrombectomy: Efficacy and safety of REACT catheter combined with stent retriever

    Get PDF
    Acute stroke; Endovascular treatment; Mechanical thrombectomyAccidente cerebrovascular agudo; Tratamiento endovascular; Trombectomía mecánicaAccident cerebrovascular agut; Tractament endovascular; Trombectomia mecànicaIntroduction Mechanical thrombectomy (MT) with combined treatment including both a stent retriever and distal aspiration catheter may improve recanalization rates in patients with acute ischemic stroke (AIS) due to large vessel occlusion (LVO). Here, we evaluated the effectiveness and safety of the REACT aspiration catheter used with a stent retriever. Methods This prospective study included consecutive adult patients who underwent MT with a combined technique using REACT 68 and/or 71 between June 2020 and July 2021. The primary endpoints were final and first pass mTICI 2b-3 and mTICI 2c-3 recanalization. Analysis was performed after first pass and after each attempt. Secondary safety outcomes included procedural complications, symptomatic intracranial hemorrhage (sICH) at 24 h, in-hospital mortality, and 90-day functional independence (modified Rankin Scale [mRS] 0–2). Results A total of 102 patients were included (median age 78; IQR: 73–87; 50.0% female). At baseline, median NIHSS score was 19 (IQR: 11–21), and ASPECTS was 9 (IQR: 8–10). Final mTICI 2b-3 recanalization was achieved in 91 (89.2%) patients and mTICI 2c-3 was achieved in 66 (64.7%). At first pass, mTICI 2b-3 was achieved in 55 (53.9%) patients, and mTICI 2c-3 in 37 (36.3%). The rate of procedural complications was 3.9% (4/102), sICH was 6.8% (7/102), in-hospital mortality was 12.7% (13/102), and 90-day functional independence was 35.6% (36/102). Conclusion A combined MT technique using a stent retriever and REACT catheter resulted in a high rate of successful recanalization and first pass recanalization in a sample of consecutive patients with AIS due to LVO in clinical use

    A synergistic ozone-climate control to address emerging ozone pollution challenges

    Get PDF
    Tropospheric ozone threatens human health and crop yields, exacerbates global warming, and fundamentally changes atmospheric chemistry. Evidence has pointed toward widespread ozone increases in the troposphere, and particularly surface ozone is chemically complex and difficult to abate. Despite past successes in some regions, a solution to new challenges of ozone pollution in a warming climate remains unexplored. In this perspective, by compiling surface measurements at ∼4,300 sites worldwide between 2014 and 2019, we show the emerging global challenge of ozone pollution, featuring the unintentional rise in ozone due to the uncoordinated emissions reduction and increasing climate penalty. On the basis of shared emission sources, interactive chemical mechanisms, and synergistic health effects between ozone pollution and climate warming, we propose a synergistic ozone-climate control strategy incorporating joint control of ozone and fine particulate matter. This new solution presents an opportunity to alleviate tropospheric ozone pollution in the forthcoming low-carbon transition.This study was supported by the Research Grants Council of Hong Kong Special Administrative Region via General Research Funds (HKBU 15219621 and PolyU 15212421) and a Theme-based Research Scheme (T24-504/17-N). The authors acknowledge the support of the Australia–China Centre on Air Quality Science and Management. R.S. acknowledges support from ANID/FONDAP/1522A0001. D.S. thanks the program of Coordination for the Improvement of Higher Education Personnel (CAPES) (436466/2018-0). X.X. acknowledges funding from the Natural Science Foundation of China (41330422) and the Chinese Academy of Meteorological Sciences (2020KJ003). K.L. is supported by the Natural Science Foundation of China (42205114), Jiangsu Carbon Peak and Neutrality Science and Technology Innovation fund (BK20220031), and the Startup Foundation for Introducing Talent of NUIST. We sincerely appreciate all the organizations and programs introduced in the section “experimental procedures” for freely providing ozone data. We thank Dr. Owen Cooper (University of Colorado, Boulder, and NOAA) for insightful guidance and discussion. No organization or program will be responsible for the results generated from their data.Peer reviewe

    Photochemical sensitivity to emissions and local meteorology in Bogotá, Santiago, and São Paulo: An analysis of the initial COVID-19 lockdowns

    Get PDF
    This study delves into the photochemical atmospheric changes reported globally during the pandemic by analyzing the change in emissions from mobile sources and the contribution of local meteorology to ozone (O3) and particle formation in Bogotá (Colombia), Santiago (Chile), and São Paulo (Brazil). The impact of mobility reductions (50%–80%) produced by the early coronavirus-imposed lockdown was assessed through high-resolution vehicular emission inventories, surface measurements, aerosol optical depth and size, and satellite observations of tropospheric nitrogen dioxide (NO2) columns. A generalized additive model (GAM) technique was also used to separate the local meteorology and urban patterns from other drivers relevant for O3 and NO2 formation. Volatile organic compounds, nitrogen oxides (NOx), and fine particulate matter (PM2.5) decreased significantly due to motorized trip reductions. In situ nitrogen oxide median surface mixing ratios declined by 70%, 67%, and 67% in Bogotá, Santiago, and São Paulo, respectively. NO2 column medians from satellite observations decreased by 40%, 35%, and 47%, respectively, which was consistent with the changes in mobility and surface mixing ratio reductions of 34%, 25%, and 34%. However, the ambient NO2 to NOx ratio increased, denoting a shift of the O3 formation regime that led to a 51%, 36%, and 30% increase in the median O3 surface mixing ratios in the 3 respective cities. O3 showed high sensitivity to slight temperature changes during the pandemic lockdown period analyzed. However, the GAM results indicate that O3 increases were mainly caused by emission changes. The lockdown led to an increase in the median of the maximum daily 8-h average O3 of between 56% and 90% in these cities

    A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission

    Get PDF
    This global study, which has been coordinated by the World Meteorological Organization Global Atmospheric Watch (WMO/GAW) programme, aims to understand the behaviour of key air pollutant species during the COVID-19 pandemic period of exceptionally low emissions across the globe. We investigated the effects of the differences in both emissions and regional and local meteorology in 2020 compared with the period 2015–2019. By adopting a globally consistent approach, this comprehensive observational analysis focuses on changes in air quality in and around cities across the globe for the following air pollutants PM2.5, PM10, PMC (coarse fraction of PM), NO2, SO2, NOx, CO, O3 and the total gaseous oxidant (OX = NO2 + O3) during the pre-lockdown, partial lockdown, full lockdown and two relaxation periods spanning from January to September 2020. The analysis is based on in situ ground-based air quality observations at over 540 traffic, background and rural stations, from 63 cities and covering 25 countries over seven geographical regions of the world. Anomalies in the air pollutant concentrations (increases or decreases during 2020 periods compared to equivalent 2015–2019 periods) were calculated and the possible effects of meteorological conditions were analysed by computing anomalies from ERA5 reanalyses and local observations for these periods. We observed a positive correlation between the reductions in NO2 and NOx concentrations and peoples’ mobility for most cities. A correlation between PMC and mobility changes was also seen for some Asian and South American cities. A clear signal was not observed for other pollutants, suggesting that sources besides vehicular emissions also substantially contributed to the change in air quality. As a global and regional overview of the changes in ambient concentrations of key air quality species, we observed decreases of up to about 70% in mean NO2 and between 30% and 40% in mean PM2.5 concentrations over 2020 full lockdown compared to the same period in 2015–2019. However, PM2.5 exhibited complex signals, even within the same region, with increases in some Spanish cities, attributed mainly to the long-range transport of African dust and/or biomass burning (corroborated with the analysis of NO2/CO ratio). Some Chinese cities showed similar increases in PM2.5 during the lockdown periods, but in this case, it was likely due to secondary PM formation. Changes in O3 concentrations were highly heterogeneous, with no overall change or small increases (as in the case of Europe), and positive anomalies of 25% and 30% in East Asia and South America, respectively, with Colombia showing the largest positive anomaly of ~70%. The SO2 anomalies were negative for 2020 compared to 2015–2019 (between ~25 to 60%) for all regions. For CO, negative anomalies were observed for all regions with the largest decrease for South America of up to ~40%. The NO2/CO ratio indicated that specific sites (such as those in Spanish cities) were affected by biomass burning plumes, which outweighed the NO2 decrease due to the general reduction in mobility (ratio of ~60%). Analysis of the total oxidant (OX = NO2 + O3) showed that primary NO2 emissions at urban locations were greater than the O3 production, whereas at background sites, OX was mostly driven by the regional contributions rather than local NO2 and O3 concentrations. The present study clearly highlights the importance of meteorology and episodic contributions (e.g., from dust, domestic, agricultural biomass burning and crop fertilizing) when analysing air quality in and around cities even during large emissions reductions. There is still the need to better understand how the chemical responses of secondary pollutants to emission change under complex meteorological conditions, along with climate change and socio-economic drivers may affect future air quality. The implications for regional and global policies are also significant, as our study clearly indicates that PM2.5 concentrations would not likely meet the World Health Organization guidelines in many parts of the world, despite the drastic reductions in mobility. Consequently, revisions of air quality regulation (e.g., the Gothenburg Protocol) with more ambitious targets that are specific to the different regions of the world may well be required.Peer reviewedFinal Published versio

    A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions

    Get PDF
    This global study, which has been coordinated by the World Meteorological Organization Global Atmospheric Watch (WMO/GAW) programme, aims to understand the behaviour of key air pollutant species during the COVID-19 pandemic period of exceptionally low emissions across the globe. We investigated the effects of the differences in both emissions and regional and local meteorology in 2020 compared with the period 2015–2019. By adopting a globally consistent approach, this comprehensive observational analysis focuses on changes in air quality in and around cities across the globe for the following air pollutants PM2.5, PM10, PMC (coarse fraction of PM), NO2, SO2, NOx, CO, O3 and the total gaseous oxidant (OX = NO2 + O3) during the pre-lockdown, partial lockdown, full lockdown and two relaxation periods spanning from January to September 2020. The analysis is based on in situ ground-based air quality observations at over 540 traffic, background and rural stations, from 63 cities and covering 25 countries over seven geographical regions of the world. Anomalies in the air pollutant concentrations (increases or decreases during 2020 periods compared to equivalent 2015–2019 periods) were calculated and the possible effects of meteorological conditions were analysed by computing anomalies from ERA5 reanalyses and local observations for these periods. We observed a positive correlation between the reductions in NO2 and NOx concentrations and peoples’ mobility for most cities. A correlation between PMC and mobility changes was also seen for some Asian and South American cities. A clear signal was not observed for other pollutants, suggesting that sources besides vehicular emissions also substantially contributed to the change in air quality. As a global and regional overview of the changes in ambient concentrations of key air quality species, we observed decreases of up to about 70% in mean NO2 and between 30% and 40% in mean PM2.5 concentrations over 2020 full lockdown compared to the same period in 2015–2019. However, PM2.5 exhibited complex signals, even within the same region, with increases in some Spanish cities, attributed mainly to the long-range transport of African dust and/or biomass burning (corroborated with the analysis of NO2/CO ratio). Some Chinese cities showed similar increases in PM2.5 during the lockdown periods, but in this case, it was likely due to secondary PM formation. Changes in O3 concentrations were highly heterogeneous, with no overall change or small increases (as in the case of Europe), and positive anomalies of 25% and 30% in East Asia and South America, respectively, with Colombia showing the largest positive anomaly of ~70%. The SO2 anomalies were negative for 2020 compared to 2015–2019 (between ~25 to 60%) for all regions. For CO, negative anomalies were observed for all regions with the largest decrease for South America of up to ~40%. The NO2/CO ratio indicated that specific sites (such as those in Spanish cities) were affected by biomass burning plumes, which outweighed the NO2 decrease due to the general reduction in mobility (ratio of ~60%). Analysis of the total oxidant (OX = NO2 + O3) showed that primary NO2 emissions at urban locations were greater than the O3 production, whereas at background sites, OX was mostly driven by the regional contributions rather than local NO2 and O3 concentrations. The present study clearly highlights the importance of meteorology and episodic contributions (e.g., from dust, domestic, agricultural biomass burning and crop fertilizing) when analysing air quality in and around cities even during large emissions reductions. There is still the need to better understand how the chemical responses of secondary pollutants to emission change under complex meteorological conditions, along with climate change and socio-economic drivers may affect future air quality. The implications for regional and global policies are also significant, as our study clearly indicates that PM2.5 concentrations would not likely meet the World Health Organization guidelines in many parts of the world, despite the drastic reductions in mobility. Consequently, revisions of air quality regulation (e.g., the Gothenburg Protocol) with more ambitious targets that are specific to the different regions of the world may well be required.World Meteorological Organization Global Atmospheric Watch programme is gratefully acknowledged for initiating and coordinating this study and for supporting this publication. We acknowledge the following projects for supporting the analysis contained in this article: Air Pollution and Human Health for an Indian Megacity project PROMOTE funded by UK NERC and the Indian MOES, Grant reference number NE/P016391/1; Regarding project funding from the European Commission, the sole responsibility of this publication lies with the authors. The European Commission is not responsible for any use that may be made of the information contained therein. This project has received funding from the European Commission’s Horizon 2020 research and innovation program under grant agreement No 874990 (EMERGE project). European Regional Development Fund (project MOBTT42) under the Mobilitas Pluss programme; Estonian Research Council (project PRG714); Estonian Research Infrastructures Roadmap project Estonian Environmental Observatory (KKOBS, project 2014-2020.4.01.20-0281). European network for observing our changing planet project (ERAPLANET, grant agreement no. 689443) under the European Union’s Horizon 2020 research and innovation program, Estonian Ministry of Sciences projects (grant nos. P180021, P180274), and the Estonian Research Infrastructures Roadmap project Estonian Environmental Observatory (3.2.0304.11-0395). Eastern Mediterranean and Middle East—Climate and Atmosphere Research (EMME-CARE) project, which has received funding from the European Union’s Horizon 2020 Research and Innovation Programme (grant agreement no. 856612) and the Government of Cyprus. INAR acknowledges support by the Russian government (grant number 14.W03.31.0002), the Ministry of Science and Higher Education of the Russian Federation (agreement 14.W0331.0006), and the Russian Ministry of Education and Science (14.W03.31.0008). We are grateful to to the following agencies for providing access to data used in our analysis: A.M. Obukhov Institute of Atmospheric Physics Russian Academy of Sciences; Agenzia Regionale per la Protezione dell’Ambiente della Campania (ARPAC); Air Quality and Climate Change, Parks and Environment (MetroVancouver, Government of British Columbia); Air Quality Monitoring & Reporting, Nova Scotia Environment (Government of Nova Scotia); Air Quality Monitoring Network (SIMAT) and Emission Inventory, Mexico City Environment Secretariat (SEDEMA); Airparif (owner & provider of the Paris air pollution data); ARPA Lazio, Italy; ARPA Lombardia, Italy; Association Agr´e´ee de Surveillance de la Qualit´e de l’Air en ˆIle-de- France AIRPARIF / Atmo-France; Bavarian Environment Agency, Germany; Berlin Senatsverwaltung für Umwelt, Verkehr und Klimaschutz, Germany; California Air Resources Board; Central Pollution Control Board (CPCB), India; CETESB: Companhia Ambiental do Estado de S˜ao Paulo, Brazil. China National Environmental Monitoring Centre; Chandigarh Pollution Control Committee (CPCC), India. DCMR Rijnmond Environmental Service, the Netherlands. Department of Labour Inspection, Cyprus; Department of Natural Resources Management and Environmental Protection of Moscow. Environment and Climate Change Canada; Environmental Monitoring and Science Division Alberta Environment and Parks (Government of Alberta); Environmental Protection Authority Victoria (Melbourne, Victoria, Australia); Estonian Environmental Research Centre (EERC); Estonian University of Life Sciences, SMEAR Estonia; European Regional Development Fund (project MOBTT42) under the Mobilitas Pluss programme; Finnish Meteorological Institute; Helsinki Region Environmental Services Authority; Haryana Pollution Control Board (HSPCB), IndiaLondon Air Quality Network (LAQN) and the Automatic Urban and Rural Network (AURN) supported by the Department of Environment, Food and Rural Affairs, UK Government; Madrid Municipality; Met Office Integrated Data Archive System (MIDAS); Meteorological Service of Canada; Minist`ere de l’Environnement et de la Lutte contre les changements climatiques (Gouvernement du Qu´ebec); Ministry of Environment and Energy, Greece; Ministry of the Environment (Chile) and National Weather Service (DMC); Moscow State Budgetary Environmental Institution MOSECOMONITORING. Municipal Department of the Environment SMAC, Brazil; Municipality of Madrid public open data service; National institute of environmental research, Korea; National Meteorology and Hydrology Service (SENAMHI), Peru; New York State Department of Environmental Conservation; NSW Department of Planning, Industry and Environment; Ontario Ministry of the Environment, Conservation and Parks, Canada; Public Health Service of Amsterdam (GGD), the Netherlands. Punjab Pollution Control Board (PPCB), India. R´eseau de surveillance de la qualit´e de l’air (RSQA) (Montr´eal); Rosgydromet. Mosecomonitoring, Institute of Atmospheric Physics, Russia; Russian Foundation for Basic Research (project 20–05–00254) SAFAR-IITM-MoES, India; S˜ao Paulo State Environmental Protection Agency, CETESB; Secretaria de Ambiente, DMQ, Ecuador; Secretaría Distrital de Ambiente, Bogot´a, Colombia. Secretaria Municipal de Meio Ambiente Rio de Janeiro; Mexico City Atmospheric Monitoring System (SIMAT); Mexico City Secretariat of Environment, Secretaría del Medio Ambiente (SEDEMA); SLB-analys, Sweden; SMEAR Estonia station and Estonian University of Life Sciences (EULS); SMEAR stations data and Finnish Center of Excellence; South African Weather Service and Department of Environment, Forestry and Fisheries through SAAQIS; Spanish Ministry for the Ecological Transition and the Demographic Challenge (MITECO); University of Helsinki, Finland; University of Tartu, Tahkuse air monitoring station; Weather Station of the Institute of Astronomy, Geophysics and Atmospheric Science of the University of S˜ao Paulo; West Bengal Pollution Control Board (WBPCB).http://www.elsevier.com/locate/envintam2023Geography, Geoinformatics and Meteorolog

    Air quality data of station Parque Dom Pedro, São Paulo from 2014-2020

    No full text
    We compiled criteria pollutants from four air quality monitoring stations in Bogotá, eight in Santiago, and five in São Paulo to characterize the impact of emission changes on air quality during the early Coronavirus-imposed lockdown. Time series include hourly measurements (UTC) of ozone (ppbv), nitric oxide (ppbv), nitrogen dioxide (ppbv), carbon monoxide (ppmv), and PM2.5 (microgram per cubic meter), from 1 January 2014 to 1 June 2020. Specifically, datasets were used to compare the lockdown period (March-May 2020) with the baseline period defined as the multi-year average between 2014 and 2019. São Paulo's air quality data were downloaded from the website of the official monitoring network (https://qualar.cetesb.sp.gov.br). The data provided correspond to the following stations: Congonhas, Ibirapuera, Ponte dos Remedios, Parque Dom Pedro, and Pinheiros
    corecore