686 research outputs found
Augmentation of Fighter-Aircraft Performance by Spanwise Blowing over the Wing Leading Edge
Spanwise blowing over the wing and canard of a 1:35 model of a close-coupled-canard fighter airplane configuration (similar to the Kfir-C2) was investigated experimentally in low-speed flow. Tests were conducted at airspeeds of 30 m/sec (Reynolds number of 1.8 x 10 to the 5th power based on mean aerodynamic chord) with angle-of-attack sweeps from -8 to 60 deg, and yaw-angle sweeps from -8 to 36 deg at fixed angles of attack 0, 10, 20, 25, 30, and 35 deg. Significant improvement in lift-curve slope, maximum lift, drag polar and lateral/directional stability was found, enlarging the flight envelope beyond its previous low-speed/maximum-lift limit. In spite of the highly swept (60 deg) leading edge, the efficiency of the lift augmentation by blowing was relatively high and was found to increase with increasing blowing momentum on the close-coupled-canard configuration. Interesting possibilities of obtaining much higher efficiencies with swirling jets were indicated
The evaluation of the rolling moments induced by wraparound fins
A possible reason is suggested for the induced rolling moments occurring on wraparound-fin configurations in subsonic flight at zero angle of attack. The subsonic potential flow over the configuration at zero incidence is solved numerically. The body is simulated by a distribution of sources along its axis, and the fins are described by a vortex-lattice method. It is shown that rolling moments can be induced on the antisymmetric fins by the radial flow generated at the base of the configuration, either over the converging separated wake, or over the diverging plume of a rocket motor
Convergence characteristics of nonlinear vortex-lattice methods for configuration aerodynamics
Nonlinear panel methods have no proof for the existence and uniqueness of their solutions. The convergence characteristics of an iterative, nonlinear vortex-lattice method are, therefore, carefully investigated. The effects of several parameters, including (1) the surface-paneling method, (2) an integration method of the trajectories of the wake vortices, (3) vortex-grid refinement, and (4) the initial conditions for the first iteration on the computed aerodynamic coefficients and on the flow-field details are presented. The convergence of the iterative-solution procedure is usually rapid. The solution converges with grid refinement to a constant value, but the final value is not unique and varies with the wing surface-paneling and wake-discretization methods within some range in the vicinity of the experimental result
Structured Random Matrices
Random matrix theory is a well-developed area of probability theory that has
numerous connections with other areas of mathematics and its applications. Much
of the literature in this area is concerned with matrices that possess many
exact or approximate symmetries, such as matrices with i.i.d. entries, for
which precise analytic results and limit theorems are available. Much less well
understood are matrices that are endowed with an arbitrary structure, such as
sparse Wigner matrices or matrices whose entries possess a given variance
pattern. The challenge in investigating such structured random matrices is to
understand how the given structure of the matrix is reflected in its spectral
properties. This chapter reviews a number of recent results, methods, and open
problems in this direction, with a particular emphasis on sharp spectral norm
inequalities for Gaussian random matrices.Comment: 46 pages; to appear in IMA Volume "Discrete Structures: Analysis and
Applications" (Springer
Cooling Strategies for Greenhouses in Summer: Control of Fogging by Pulse Width Modulation
The possibilities for improving the control of greenhouse fogging systems, were studied by comparing several combinations of ventilation cooling techniques, shade screening and low-pressure fogging. The study was divided into three parts: experiments, modelling and simulations. In the first part of the paper, ten combinations of five cooling techniques were tested during the summers of 2002 and 2003 in a 132m2 greenhouse with a steel structure and a single-layer methacrylate cover located in Madrid, Spain. An analysis of variance of the climatic parameters was carried out to determine which combinations produced significant differences in inside temperature or relative humidity. Comparing the values for the inside to outside temperature difference, the combination of a shade screen and above-screen fogging achieved a difference in temperature almost the same as that for under-screen fogging, but the relative humidity was significantly lower. In the second part of the study a dynamic model was developed (2002) and validated (2003). The mean absolute error obtained for inside temperature was similar in the fit and the validation and it was less than 1.5 1C in both cases. The model was used to simulate the inside air temperature for a fog system working without shading, and above and under a shade screen. Control algorithms were developed for reducing system water consumption. In the three cases a simple on/off control with a fixed fogging cycle was compared with a pulse width modulation (PWM) strategy, in which the duration of the fogging pulse was increased as a function of inside temperature. The strategies with PWM applied to the fog system were able to reduce water consumption by 8–15% with respect to the strategies with a fixed fogging cycle
Iso-osmotic regulation of nitrate accumulation in lettuce (Lactuca sativa L.)
Concerns about possible health hazards arising from human consumption of lettuce and other edible vegetable crops with high concentrations of nitrate have generated demands for a greater understanding of processes involved in its uptake and accumulation in order to devise more sustainable strategies for its control. This paper evaluates a proposed iso-osmotic mechanism for the regulation of nitrate accumulation in lettuce (Lactuca sativa L.) heads. This mechanism assumes that changes in the concentrations of nitrate and all other endogenous osmotica (including anions, cations and neutral solutes) are continually adjusted in tandem to minimise differences in osmotic potential of the shoot sap during growth, with these changes occurring independently of any variations in external water potential. The hypothesis was tested using data from six new experiments, each with a single unique treatment comprising a separate combination of light intensity, N source (nitrate with or without ammonium) and nitrate concentration carried out hydroponically in a glasshouse using a butterhead lettuce variety. Repeat measurements of plant weights and estimates of all of the main soluble constituents (nitrate, potassium, calcium, magnesium, organic anions, chloride, phosphate, sulphate and soluble carbohydrates) in the shoot sap were made at intervals from about 2 weeks after transplanting until commercial maturity, and the data used to calculate changes in average osmotic potential in the shoot. Results showed that nitrate concentrations in the sap increased when average light levels were reduced by between 30 and 49 % and (to a lesser extent) when nitrate was supplied at a supra-optimal concentration, and declined with partial replacement of nitrate by ammonium in the external nutrient supply. The associated changes in the proportions of other endogenous osmotica, in combination with the adjustment of shoot water content, maintained the total solute concentrations in shoot sap approximately constant and minimised differences in osmotic potential between treatments at each sampling date. There was, however, a gradual increase in osmotic potential (ie a decline in total solute concentration) over time largely caused by increases in shoot water content associated with the physiological and morphological development of the plants. Regression analysis using normalised data (to correct for these time trends) showed that the results were consistent with a 1:1 exchange between the concentrations of nitrate and the sum of all other endogenous osmotica throughout growth, providing evidence that an iso-osmotic mechanism (incorporating both concentration and volume regulation) was involved in controlling nitrate concentrations in the shoot
Smooth analysis of the condition number and the least singular value
Let \a be a complex random variable with mean zero and bounded variance.
Let be the random matrix of size whose entries are iid copies of
\a and be a fixed matrix of the same size. The goal of this paper is to
give a general estimate for the condition number and least singular value of
the matrix , generalizing an earlier result of Spielman and Teng for
the case when \a is gaussian.
Our investigation reveals an interesting fact that the "core" matrix does
play a role on tail bounds for the least singular value of . This
does not occur in Spielman-Teng studies when \a is gaussian.
Consequently, our general estimate involves the norm .
In the special case when is relatively small, this estimate is nearly
optimal and extends or refines existing results.Comment: 20 pages. An erratum to the published version has been adde
The influence of mothers' and fathers' parenting stress and depressive symptoms on own and partner's parent-child communication
This study examines how parenting stress and depressive symptoms experienced by mothers and fathers influence their own (actor effects) and the partner's (partner effects) parent–child communication. Based on the Actor-Partner Interdependence Model, data from 196 families were analyzed, with both parents rating their parenting stress and depressive feelings, and parents as well as children rating the open parent–child communication. Actor effects were found between parenting stress and open parent–child communication, whereas partner effects were prominent between depressive symptoms and open parent–child communication. The results provide no evidence for gender differences in the strength of the pathways to open parent–child communication. Our findings demonstrate the need to include both parents in studies on parent–child communication to enhance our understanding of the mutual influence among family members
Estimation in high dimensions: a geometric perspective
This tutorial provides an exposition of a flexible geometric framework for
high dimensional estimation problems with constraints. The tutorial develops
geometric intuition about high dimensional sets, justifies it with some results
of asymptotic convex geometry, and demonstrates connections between geometric
results and estimation problems. The theory is illustrated with applications to
sparse recovery, matrix completion, quantization, linear and logistic
regression and generalized linear models.Comment: 56 pages, 9 figures. Multiple minor change
- …
