26 research outputs found

    Entwicklung einer magnetostriktiven Dünnschicht-Mikromembranpumpe

    Get PDF

    Diffusive and ballistic current spin-polarization in magnetron-sputtered L1o-ordered epitaxial FePt

    Full text link
    We report on the structural, magnetic, and electron transport properties of a L1o-ordered epitaxial iron-platinum alloy layer fabricated by magnetron-sputtering on a MgO(001) substrate. The film studied displayed a long range chemical order parameter of S~0.90, and hence has a very strong perpendicular magnetic anisotropy. In the diffusive electron transport regime, for temperatures ranging from 2 K to 258 K, we found hysteresis in the magnetoresistance mainly due to electron scattering from magnetic domain walls. At 2 K, we observed an overall domain wall magnetoresistance of about 0.5 %. By evaluating the spin current asymmetry alpha = sigma_up / sigma_down, we were able to estimate the diffusive spin current polarization. At all temperatures ranging from 2 K to 258 K, we found a diffusive spin current polarization of > 80%. To study the ballistic transport regime, we have performed point-contact Andreev-reflection measurements at 4.2 K. We obtained a value for the ballistic current spin polarization of ~42% (which compares very well with that of a polycrystalline thin film of elemental Fe). We attribute the discrepancy to a difference in the characteristic scattering times for oppositely spin-polarized electrons, such scattering times influencing the diffusive but not the ballistic current spin polarization.Comment: 22 pages, 13 figure

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Impact of a remifentanil supply shortage on mechanical ventilation in a tertiary care hospital: a retrospective comparison

    No full text
    Abstract Background The continuous administration of opioids in critical care patients is a common therapy for the tolerance of mechanical ventilation. Opioid choice has a crucial impact on the length of mechanical ventilation. Owing to its very short context-sensitive half-life, remifentanil widens the available options for sedoanalgetic strategies. Supply disruption of such established intensive care medication has been reported to worsen clinical outcomes. Methods This retrospective study investigated the influence of a nationwide supply shortage of remifentanil on mechanical ventilation and ventilation-associated outcomes at three perioperative intensive care units (ICUs) in a tertiary care hospital in Vienna. Two groups were followed: patients admitted to the ICU during the remifentanil shortage (July 1, 2016 to September 30, 2016) and a control group one year after the remifentanil shortage (July 1, 2017 to September 30, 2017). Included patients were adults, received mechanical ventilation for at least 6 h, were admitted less than 90 days in the respective ICU, and survived their admission. Results For comparison, Poisson count regression models and logistic regression models were computed. To compensate for multiple testing, the significance level was split (0.02 for the primary and 0.006 for secondary outcome parameters). Patients in the remifentanil shortage group received significantly longer mechanical ventilation (risk ratio 2.19, 95% confidence interval 2.14–2.24, P <0.001) with significantly prolonged ICU stay (P <0.001), days with non-invasive ventilation (P <0.001), and length of hospital stay (P <0.001). No significant difference was found in the occurrence of pneumonia (P = 0.040) and sepsis (P = 0.061). A greater proportion of patients in the shortage group underwent secondary tracheostomy (P <0.001). Conclusions The remifentanil shortage caused a significant impairment of essential outcome parameters in the ICU

    Magnetic heating properties and neutron activation of tungsten-oxide coated biocompatible FePt core–shell nanoparticles

    No full text
    Magnetic nanoparticles are highly desirable for biomedical research and treatment of cancer especially when combined with hyperthermia. The efficacy of nanoparticle-based therapies could be improved by generating radioactive nanoparticles with a convenient decay time and which simultaneously have the capability to be used for locally confined heating. The core–shell morphology of such novel nanoparticles presented in this work involves a polysilico-tungstate molecule of the polyoxometalate family as a precursor coating material, which transforms into an amorphous tungsten oxide coating upon annealing of the FePt core–shell nanoparticles. The content of tungsten atoms in the nanoparticle shell is neutron activated using cold neutrons at the Heinz Maier-Leibnitz (FRMII) neutron facility and thereby transformed into the radioisotope W-187. The sizeable natural abundance of 28% for the W-186 precursor isotope, a radiopharmaceutically advantageous gamma–beta ratio of View the MathML sourceγβ≈30% and a range of approximately 1 mm in biological tissue for the 1.3 MeV β-radiation are promising features of the nanoparticles' potential for cancer therapy. Moreover, a high temperature annealing treatment enhances the magnetic moment of nanoparticles in such a way that a magnetic heating effect of several degrees Celsius in liquid suspension – a prerequisite for hyperthermia treatment of cancer – was observed. A rise in temperature of approximately 3 °C in aqueous suspension is shown for a moderate nanoparticle concentration of 0.5 mg/ml after 15 min in an 831 kHz high-frequency alternating magnetic field of 250 Gauss field strength (25 mT). The biocompatibility based on a low cytotoxicity in the non-neutron-activated state in combination with the hydrophilic nature of the tungsten oxide shell makes the coated magnetic FePt nanoparticles ideal candidates for advanced radiopharmaceutical applications
    corecore