270 research outputs found

    Impact of social integration on metabolic functions: evidence from a nationally representative longitudinal study of US older adults

    Get PDF
    BACKGROUND: Metabolic functions may operate as important biophysiological mechanisms through which social relationships affect health. It is unclear how social embeddedness or the lack thereof is related to risk of metabolic dysregulation. To fill this gap we tested the effects of social integration on metabolic functions over time in a nationally representative sample of older adults in the United States and examined population heterogeneity in the effects. METHODS: Using longitudinal data from 4,323 adults aged over 50 years in the Health and Retirement Study and latent growth curve models, we estimated the trajectories of social integration spanning five waves, 1998–2006, in relation to biomarkers of energy metabolism in 2006. We assessed social integration using a summary index of the number of social ties across five domains. We examined six biomarkers, including total cholesterol, high-density lipoprotein cholesterol, glycosylated hemoglobin, waist circumference, and systolic and diastolic blood pressure, and the summary index of the overall burden of metabolic dysregulation. RESULTS: High social integration predicted significantly lower risks of both individual and overall metabolic dysregulation. Specifically, adjusting for age, sex, race, and body mass index, having four to five social ties reduced the risks of abdominal obesity by 61% (odds ratio [OR] [95% confidence interval {CI}] = 0.39 [0.23, 0.67], p = .007), hypertension by 41% (OR [95% CI] = 0.59 [0.42, 0.84], p = .021), and the overall metabolic dysregulation by 46% (OR [95% CI] = 0.54 [0.40, 0.72], p < .001). The OR for the overall burden remained significant when adjusting for social, behavioral, and illness factors. In addition, stably high social integration had more potent metabolic impacts over time than changes therein. Such effects were consistent across subpopulations and more salient for the younger old (those under age 65), males, whites, and the socioeconomically disadvantaged. CONCLUSIONS: This study addressed important challenges in previous research linking social integration to metabolic health by clarifying the nature and direction of the relationship as it applies to different objectively measured markers and population subgroups. It suggests additional psychosocial and biological pathways to consider in future research on the contributions of social deficits to disease etiology and old-age mortality

    Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses

    Get PDF
    The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined

    Reduction of aldehydes and hydrogen cyanide yields in mainstream cigarette smoke using an amine functionalised ion exchange resin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cigarette smoking is a well recognized cause of diseases such as lung cancer, chronic obstructive pulmonary disease and cardiovascular disease. Of the more than 5000 identified species in cigarette smoke, at least 150 have toxicological activity. For example, formaldehyde and acetaldehyde have been assigned as Group 1 and Group 2B carcinogens by IARC, and hydrogen cyanide has been identified as a respiratory and cardiovascular toxicant. Active carbon has been shown to be an effective material for the physical adsorption of many of the smoke volatile species. However, physical adsorption of acetaldehyde, formaldehyde and also hydrogen cyanide from smoke is less effective using carbon. Alternative methods for the removal of these species from cigarette smoke are therefore of interest. A macroporous, polystyrene based ion-exchange resin (Diaion<sup>®</sup>CR20) with surface amine group functionality has been investigated for its ability to react with aldehydes and HCN in an aerosol stream, and thus selectively reduce the yields of these compounds (in particular formaldehyde) in mainstream cigarette smoke.</p> <p>Results</p> <p>Resin surface chemistry was characterized using vapour sorption, XPS, TOF-SIMS and <sup>15</sup>N NMR. Diaion<sup>®</sup>CR20 was found to have structural characteristics indicating weak physisorption properties, but sufficient surface functionalities to selectively remove aldehydes and HCN from cigarette smoke. Using 60 mg of Diaion<sup>®</sup>CR20 in a cigarette cavity filter gave reductions in smoke formaldehyde greater than 50% (estimated to be equivalent to >80% of the formaldehyde present in the smoke vapour phase) independent of a range of flow rates. Substantial removal of HCN (>80%) and acetaldehyde (>60%) was also observed. The performance of Diaion<sup>®</sup>CR20 was found to be consistent over a test period of 6 months. The overall adsorption for the majority of smoke compounds measured appeared to follow a pseudo-first order approximation to second order kinetics.</p> <p>Conclusions</p> <p>This study has shown that Diaion<sup>®</sup>CR20 is a highly selective and efficient adsorbent for formaldehyde, acetaldehyde and HCN in cigarette smoke. The reductions for these compounds were greater than those achieved using an active carbon. The results also demonstrate that chemisorption can be an effective mechanism for the removal of certain vapour phase toxicants from cigarette smoke.</p

    Interaction between COMT rs5993883 and second generation antipsychotics is linked to decreases in verbal cognition and cognitive control in bipolar disorder

    Get PDF
    Abstract Background Second generation antipsychotics (SGAs) are increasingly utilized in Bipolar Disorder (BD) but are potentially associated with cognitive side effects. Also linked to cognitive deficits associated with SGA-treatment are catechol-O-methyltransferase (COMT) gene variants. In this study, we examine the relationship between cognition in SGA use and COMT rs5993883 in cohort sample of subjects with BD. Methods Interactions between SGA-treatment and COMT rs5993883 genotype on cognition was tested using a battery of neuropsychological tests performed in cross-sectional study of 246 bipolar subjects. Results The mean age of our sample was 40.15 years and was comprised of 70 % female subjects. Significant demographic differences included gender, hospitalizations, benzodiazepine/antidepressant use and BD-type diagnosis. Linear regressions showed that the COMT rs5993883 GG genotype predicted lower verbal learning (p = 0.0006) and memory (p = 0.0026) scores, and lower scores on a cognitive control task (p = 0.004) in SGA-treated subjects. Interestingly, COMT GT- or TT-variants showed no intergroup cognitive differences. Further analysis revealed an interaction between SGA-COMT GG-genotype for verbal learning (p = 0.028), verbal memory (p = 0.026) and cognitive control (p = 0.0005). Conclusions This investigation contributes to previous work demonstrating links between cognition, SGA-treatment and COMT rs5993883 in BD subjects. Our analysis shows significant associations between cognitive domains such as verbal-cognition and cognitive control in SGA-treated subjects carrying the COMT rs5993883 GG-genotype. Prospective studies are needed to evaluate the clinical significance of these findings.http://deepblue.lib.umich.edu/bitstream/2027.42/134550/1/40359_2016_Article_118.pd

    Bone refilling in cortical bone multicellular units: Insights into tetracycline double labelling from a computational model

    Get PDF
    Bone remodelling is carried out by `bone multicellular units' (BMUs) in which active osteoclasts and active osteoblasts are spatially and temporally coupled. The refilling of new bone by osteoblasts towards the back of the BMU occurs at a rate that depends both on the number of osteoblasts and on their secretory activity. In cortical bone, a linear phenomenological relationship between matrix apposition rate (MAR) and BMU cavity radius is found experimentally. How this relationship emerges from the combination of complex, nonlinear regulations of osteoblast number and secretory activity is unknown. Here, we extend our previous mathematical model of cell development within a single BMU to investigate how osteoblast number and osteoblast secretory activity vary along the BMU's closing cone. MARs predicted by the model are compared with data from tetracycline double labelling experiments. We find that the linear phenomenological relationship observed in these experiments between MAR and BMU cavity radius holds for most of the refilling phase simulated by our model, but not near the start and end of refilling. This suggests that at a particular bone site undergoing remodelling, bone formation starts and ends rapidly. Our model also suggests that part of the observed cross-sectional variability in tetracycline data may be due to different bone sites being refilled by BMUs at different stages of their lifetime. The different stages of a BMU's lifetime depend on whether the cell populations within the BMU are still developing or have reached a quasi-steady state while travelling through bone. We find that due to their longer lifespan, active osteoblasts reach a quasi-steady distribution more slowly than active osteoclasts. We suggest that this fact may locally enlarge the Haversian canal diameter (due to a local lack of osteoblasts compared to osteoclasts) near the BMU's point of origin.Comment: 16 pages, 6 figures, 3 tables. V3: minor changes: added 2 paragraphs (BMU cavity in Section 2 and Model Robustness in Section 4), references [52,54
    corecore