302 research outputs found

    Analyzing the two-dimensional plot of the interannual climate variability for detection of the climate change in the Large Karoun River Basin, Iran

    Get PDF
    In most studies on climate change, the first problem often faced by the researcher is detecting the climate change of the study area during the past periods and attributing it to the greenhouse gases. In this study, an attempt has been made to introduce a method for detecting the climate change during the past periods in regional scale and attributing it to greenhouse gases with regard to climate processes in a region. For this purpose, at first it is necessary to calculate the interannual variability range of the region climatic variables, resulting from the interaction between the climate systems of the ‘earth’ (atmosphere, biosphere, etc.). Hence, long-term statistics (1000 years) of the temperature and precipitation, resulting from control run (fix greenhouse gases) of AOGCM models (HadCM3 and CGCM3), were used for Large Karoun River Basin. Then, based on the two-variant normal distribution, the interannual climate variability range of the study area was plotted as two-dimensional temperatureprecipitation graphs. Next, the annual temperature and precipitation anomaly values of the observation stations in different regions of Large Karoun River Basin were compared with the region interannual variability range for detecting the climate change of the study area during the past and attributing it to greenhouse gases. The results show increase in temperature and decrease in precipitation trends, denoting the fact that the temperature variable has been influenced by the climate change. So, in all regions of the Large Karoun River Basin, the final years of the period (1971 to 2009) have almost been located outside the interannual climate variability range, indicating the effect of climate change on the climatic variables of the said years.Key words: Interannual climate variability, detecting the climate change, AOGCM models, Large Karoun River Basin

    Privacy Enhanced Access Control by Means of Policy Blinding

    Get PDF
    Traditional techniques of enforcing an access control policy\ud rely on an honest reference monitor to enforce the policy. However, for\ud applications where the resources are sensitive, the access control policy\ud might also be sensitive. As a result, an honest-but-curious reference monitor would glean some interesting information from the requests that it\ud processes. For example if a requestor in a role psychiatrist is granted access to a document, the patient associated with that document probably\ud has a psychiatric problem. The patient would consider this sensitive in-\ud formation, and she might prefer the honest-but-curious reference monitor\ud to remain oblivious of her mental problem.\ud We present a high level framework for querying and enforcing a role\ud based access control policy that identifies where sensitive information\ud might be disclosed. We then propose a construction which enforces a\ud role based access control policy cryptographically, in such a way that the\ud reference monitor learns as little as possible about the policy. (The reference monitor only learns something from repeated queries). We prove\ud the security of our scheme showing that it works in theory, but that it\ud has a practical drawback. However, the practical drawback is common\ud to all cryptographically enforced access policy schemes. We identify several approaches to mitigate the drawback and conclude by arguing that\ud there is an underlying fundamental problem that cannot be solved. We\ud also show why attribute based encryption techniques do not not solve the\ud problem of enforcing policy by an honest but curious reference monitor

    The effect of aquaculture effluents on water quality parameters of Haraz River

    Get PDF
    In this study, a water quality model of Haraz basin was used as an evaluative tool to estimate the spatial distribution of variables that are related to water quality and nutrient loads of the Haraz River. Previous studies performed in this river indicate that trout culture activity along the Haraz River have led to various changes in the water quality parameters. In the present work, the possible effects of two additional fish farms with a production capacity of 50 tons, located on the Haraz within 1 km distance from each other were evaluated in terms of their effects on the streams water quality. A water quality model was developed in order to investigate the spatial distribution of water quality variables. The model also used to estimate the dissolved oxygen (DO), biological oxygen demand (BOD5) and nutrients along the stream

    Enhanced low voltage nonlinearity in resonant tunneling metal–insulator–insulator–metal nanostructures

    Get PDF
    The electrical properties of bi-layer Ta2O5/Al2O3 and Nb2O5/Al2O3 metal–insulator–insulator–metal nanostructures as rectifiers have been investigated. The ultra-thin (1–6 nm) insulator layers were deposited by atomic-layer deposition or rf magnetron sputtering with Al as metal contacts. Variable angle spectroscopic ellipsometry was performed to extract the optical properties and band gap of narrow band gap insulator layers while the surface roughness of the metal contacts was measured by atomic force microscopy. Superior low voltage large signal and small signal nonlinearities such as asymmetry of 18 at 0.35 V, rate of change of non-linearity of 7.5 Vïżœ1, and responsivity of 9 A/W at 0.2 V were observed from the current–voltage characteristics. A sharp increase in current at ïżœ2 V on Ta2O5/Al2O3 device can be ascribed to resonant tunneling

    Enhanced switching stability in Ta 2 O 5 resistive RAM by fluorine doping

    Get PDF
    The effect of fluorine doping on the switching stability of Ta2O5 resistive random access memory devices is investigated. It shows that the dopant serves to increase the memory window and improve the stability of the resistive states due to the neutralization of oxygen vacancies. The ability to alter the current in the low resistance state with set current compliance coupled with large memory window makes multilevel cell switching more favorable. The devices have set and reset voltages of <1V with improved stability due to the fluorine doping. Density functional modelling shows that the incorporation of fluorine dopant atoms at the two-fold O vacancy site in the oxide network removes the defect state in the mid bandgap, lowering the overall density of defects capable of forming conductive filaments. This reduces the probability of forming alternative conducting paths and hence improves the current stability in the low resistance states. The doped devices exhibit more stable resistive states in both dc and pulsed set and reset cycles. The retention failure time is estimated to be a minimum of 2 years for F-doped devices measured by temperature accelerated and stress voltage accelerated retention failure methods

    The role of nitrogen doping in ALD Ta2O5 and its influence on multilevel cell switching in RRAM

    Get PDF
    The role of nitrogen doping on the stability and memory window of resistive state switching in N-doped Ta2O5 deposited by atomic layer deposition is elucidated. Nitrogen incorporation increases the stability of resistive memory states which is attributed to neutralization of electronic defect levels associated with oxygen vacancies. The density functional simulation with screened exchange hybrid functional approximation finds that the incorporation of nitrogen dopant atoms in the oxide network removes the O vacancy midgap defect states, thus nullifying excess defects and eliminating alternative conductive paths. By effectively reducing the density of vacancy-induced defect states through N doping, 3-bit multilevel cell switching is demonstrated, consisting of eight distinctive resistive memory states achieved by either controlling the set current compliance or the maximum voltage during reset. Nitrogen doping has a threefold effect; widening the switching memory window to accommodate more intermediate states, improving the stability of states, and providing gradual reset for multi-level cell switching during reset. The N-doped Ta2O5 devices have relatively small set and reset voltages (< 1 V) with reduced variability due to doping

    Dermal Phospho-Alpha-Synuclein Deposition in Patients With Parkinson's Disease and Mutation of the Glucocerebrosidase Gene

    Get PDF
    Heterozygous mutations in the glucocerebrosidase gene (GBA1) represent the most common genetic risk factor for Parkinson's disease (PD) and are histopathologically associated with a widespread load of alpha-synuclein in the brain. Therefore, PD patients with GBA1 mutations are a cohort of high interest for clinical trials on disease-modifying therapies targeting alpha-synuclein. There is evidence that detection of phospho-alpha-synuclein (p-syn) in dermal nerve fibers might be a biomarker for the histopathological identification of PD patients even at premotor or very early stages of disease. It is so far unknown whether dermal p-syn deposition can also be found in PD patients with GBA1 mutations and may serve as a biomarker for PD in these patients. Skin biopsies of 10 PD patients with different GBA1 mutations (six N370S, three E326K, one L444P) were analyzed by double-immunofluorescence labeling with anti-p-syn and anti-protein gene product 9.5 (PGP9.5, axonal marker) to detect intraaxonal p-syn deposition. Four biopsy sites (distal, proximal leg, paravertebral Th10, and C7) per patient were studied. P-syn was found in six patients (three N370S, three E326K). P-syn deposition was mainly detected in autonomic nerve fibers, but also in somatosensory fibers and was not restricted to a certain GBA1 mutation. In summary, dermal p-syn in PD patients with GBA1 mutations seems to offer a similar distribution and frequency as observed in patients without a known mutation. Skin biopsy may be suitable to study p-syn deposition in these patients or even to identify premotor patients with GBA1 mutations

    Atomic-layer deposited thulium oxide as a passivation layer on germanium

    Get PDF
    A comprehensive study of atomic-layer deposited thulium oxide (Tm2O3) on germanium has been conducted using x-ray photoelectron spectroscopy (XPS), vacuum ultra-violet variable angle spectroscopic ellipsometry, high-resolution transmission electron microscopy (HRTEM), and electron energy-loss spectroscopy. The valence band offset is found to be 3.05 ± 0.2 eV for Tm2O3/p-Ge from the Tm 4d centroid and Ge 3p3/2 charge-corrected XPS core-level spectra taken at different sputtering times of a single bulk thulium oxide sample. A negligible downward band bending of ∌0.12 eV is observed during progressive differential charging of Tm 4d peaks. The optical band gap is estimated from the absorption edge and found to be 5.77 eV with an apparent Urbach tail signifying band gap tailing at ∌5.3 eV. The latter has been correlated to HRTEM and electron diffraction results corroborating the polycrystalline nature of the Tm2O3 films. The Tm2O3/Ge interface is found to be rather atomically abrupt with sub-nanometer thickness. In addition, the band line-up of reference GeO2/n-Ge stacks obtained by thermal oxidation has been discussed and derived. The observed low reactivity of thulium oxide on germanium as well as the high effective barriers for holes (∌3 eV) and electrons (∌2 eV) identify Tm2O3 as a strong contender for interfacial layer engineering in future generations of scaled high-Îș gate stacks on Ge

    Decline in peripheral blood NKG2D+CD3+CD56+ NKT cells in metastatic colorectal cancer patients

    Get PDF
    OBJECTIVE: Colorectal cancer (CRC) is one of the main causes of cancer deaths in the world. This cancer can be divided into non-metastatic and metastatic CRC stages. CD3+CD56+ NKT cell subsets are a minor T cell subset in peripheral blood and conduct the killing of tumor cells in direct manner. Little is obvious about levels and surface markers of these cells such as NKG2D in different cancers, especially in CRC. METHODS: We included 15 non-metastatic (low-grade), 11 non-metastatic (high-grade), 10 metastatic colorectal cancer patients and 18 healthy controls. The percentages of CD3+CD56+ NKT cells and NKG2D+CD56+ NKT cells from samples were analyzed by flow cytometry in peripheral blood mononuclear cells (PBMCs) of samples. RESULTS: We found that there was a significantly lower number of NKG2D+CD3+CD56+ cells in peripheral blood of patients with metastatic colorectal cancer compared with normal controls (77.53 ± 5.79 vs 90.74 ± 9.84 ; p < 0.01). CONCLUSION: The fact that frequency of NKG2D+CD56+ NKT cells was significantly lower in patients with metastatic colorectal cancer compared to healthy controls strengthens the hypothesis that NKT cells can play a substantial role in the protection against human colorectal cancer, and this opens up avenues for novel studies about elucidating the other aspects of tumor surveillance in CRC progression and immunotherapy
    • 

    corecore