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Abstract
In this paper, we use the notion of a mixed weakly monotone pair of maps of Gordji et
al. (Fixed Point Theory Appl. 2012:95, 2012) to state a coupled common fixed point
theorem for maps on partially ordered S-metric spaces. This result generalizes the
main results of Gordji et al. (Fixed Point Theory Appl. 2012:95, 2012), Bhaskar,
Lakshmikantham (Nonlinear Anal. 65(7):1379-1393, 2006), Kadelburg et al. (Comput.
Math. Appl. 59:3148-3159, 2010) into the structure of S-metric spaces.

1 Introduction and preliminaries
There aremany generalizedmetric spaces such as -metric spaces [],G-metric spaces [],
D*-metric spaces [], partial metric spaces [] and cone metric spaces []. These notions
have been investigated bymany authors and various versions of fixed point theorems have
been stated in [–] recently. In [], Sedghi, Shobe and Aliouche have introduced the
notion of an S-metric space and proved that this notion is a generalization of a G-metric
space and a D*-metric space. Also, they have proved some properties of S-metric spaces
and some fixed point theorems for a self-map on an S-metric space. An interesting work
that naturally rises is to transport certain results in metric spaces and known generalized
metric spaces to S-metric spaces. In this way, some results have been obtained in [–].
In [], Gordji et al. have introduced the concept of a mixed weakly monotone pair

of maps and proved some coupled common fixed point theorems for a contractive-type
maps with themixed weakly monotone property in partially orderedmetric spaces. These
results give rise to stating coupled common fixed point theorems for maps with the mixed
weakly monotone property in partially ordered S-metric spaces.
In this paper, we use the notion of a mixed weakly monotone pair of maps to state a

coupled common fixed point theorem for maps on partially ordered S-metric spaces. This
result generalizes the main results of [, , ] into the structure of S-metric spaces.
First we recall some notions, lemmas and examples which will be useful later.

Definition . [, Definition .] LetX be a nonempty set. An S-metric onX is a function
S : X –→ [,∞) that satisfies the following conditions for all x, y, z,a ∈ X:
. S(x, y, z) =  if and only if x = y = z.
. S(x, y, z) ≤ S(x,x,a) + S(y, y,a) + S(z, z,a).

The pair (X,S) is called an S-metric space.
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The following is an intuitive geometric example for S-metric spaces.

Example . [, Example .] Let X =R
 and d be an ordinary metric on X. Put

S(x, y, z) = d(x, y) + d(x, z) + d(y, z)

for all x, y, z ∈ R
, that is, S is the perimeter of the triangle given by x, y, z. Then S is an

S-metric on X.

Lemma . [, Lemma .] Let (X,S) be an S-metric space. Then S(x,x, y) = S(y, y,x) for
all x, y ∈ X.

The following lemma is a direct consequence of Definition . and Lemma ..

Lemma . [, Lemma .] Let (X,S) be an S-metric space. Then

S(x,x, z)≤ S(x,x, y) + S(y, y, z)

and

S(x,x, z)≤ S(x,x, y) + S(z, z, y)

for all x, y, z ∈ X.

Definition . [, Definition .] Let (X,S) be an S-metric space.
. A sequence {xn} ⊂ X is said to converge to x ∈ X if S(xn,xn,x) →  as n→ ∞. That is,

for each ε > , there exists n ∈N such that for all n≥ n we have S(xn,xn,x) < ε. We
write xn → x for brevity.

. A sequence {xn} ⊂ X is called a Cauchy sequence if S(xn,xn,xm) →  as n,m → ∞.
That is, for each ε > , there exists n ∈N such that for all n,m ≥ n we have
S(xn,xn,xm) < ε.

. The S-metric space (X,S) is said to be complete if every Cauchy sequence is a
convergent sequence.

From [, Examples on p.] we have the following.

Example .
. Let R be a real line. Then

S(x, y, z) = |x – z| + |y – z|

for all x, y, z ∈R is an S-metric on R. This S-metric is called the usual S-metric on R.
Furthermore, the usual S-metric space R is complete.

. Let Y be a nonempty subset of R. Then

S(x, y, z) = |x – z| + |y – z|

for all x, y, z ∈ Y is an S-metric on Y . Furthermore, if Y is a closed subset of the usual
metric space R, then the S-metric space Y is complete.
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Lemma . [, Lemma .] Let (X,S) be an S-metric space. If xn → x and yn → y, then
S(xn,xn, yn) → S(x,x, y).

Definition . [] Let (X,S) be an S-metric space. For r >  and x ∈ X, we define the
open ball BS(x, r) and the closed ball BS[x, r] with center x and radius r as follows:

BS(x, r) =
{
y ∈ X : S(y, y,x) < r

}
,

BS[x, r] =
{
y ∈ X : S(y, y,x) ≤ r

}
.

The topology induced by the S-metric or the S-metric topology is the topology generated
by the base of all open balls in X.

Lemma . Let {xn} be a sequence in X. Then xn → x in the S-metric space (X,S) if and
only if xn → x in the S-metric topological space X .

Proof It is a direct consequence of Definition .() and Definition .. �

The following lemma shows that every metric space is an S-metric space.

Lemma . Let (X,d) be a metric space. Then we have
. Sd(x, y, z) = d(x, z) + d(y, z) for all x, y, z ∈ X is an S-metric on X .
. xn → x in (X,d) if and only if xn → x in (X,Sd).
. {xn} is Cauchy in (X,d) if and only if {xn} is Cauchy in (X,Sd).
. (X,d) is complete if and only if (X,Sd) is complete.

Proof
. See [, Example (), p.].
. xn → x in (X,d) if and only if d(xn,x) → , if and only if

Sd(xn,xn,x) = d(xn,x) → ,

that is, xn → x in (X,Sd).
. {xn} is Cauchy in (X,d) if and only if d(xn,xm) →  as n,m → ∞, if and only if

Sd(xn,xn,xm) = d(xn,xm)→ 

as n,m → ∞, that is, {xn} is Cauchy in (X,Sd).
. It is a direct consequence of () and (). �

The following example proves that the inverse implication of Lemma . does not hold.

Example . Let X = R and S(x, y, z) = |y + z – x| + |y – z| for all x, y, z ∈ X. By [, Ex-
ample (), p.], (X,S) is an S-metric space. We will prove that there does not exist any
metric d such that S(x, y, z) = d(x, z) + d(y, z) for all x, y, z ∈ X. Indeed, suppose to the con-
trary that there exists a metric d with S(x, y, z) = d(x, z) + d(y, z) for all x, y, z ∈ X. Then
d(x, z) = 

S(x,x, z) = |x – z| and d(x, y) = S(x, y, y) = |x – y| for all x, y, z ∈ X. It is a contra-
diction.
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Lemma . [, p.] Let (X,d) be a metric space. Then X × X is a metric space with the
metric Dd given by

Dd
(
(x, y), (u, v)

)
= d(x,u) + d(y, v)

for all x, y,u, v ∈ X.

Lemma . Let (X,S) be an S-metric space. Then X × X is an S-metric space with the
S-metric D given by

D
(
(x, y), (u, v), (z,w)

)
= S(x,u, z) + S(y, v,w)

for all x, y,u, v, z,w ∈ X.

Proof For all x, y,u, v, z,w ∈ X, we have D((x, y), (u, v), (z,w)) ∈ [,∞) and

D
(
(x, y), (u, v), (z,w)

)
=  if and only if S(x,u, z) + S(y, v,w) = 

if and only if x = u = z, y = v = w, that is, (x, y) = (u, v) = (z,w); and

D
(
(x, y), (u, v), (z,w)

)
= S(x,u, z) + S(y, v,w)

≤ S(x,x,a) + S(u,u,a) + S(z, z,a) + S(y, y,b) + S(v, v,b) + S(w,w,b)

=D
(
(x, y), (x, y), (a,b)

)
+D

(
(u, v), (u, v), (a,b)

)
+D

(
(z,w), (z,w), (a,b)

)
.

By the above, D is an S-metric on X ×X. �

Remark . Let (X,d) be a metric space. By using Lemma . with S = Sd , we get

D
(
(x, y), (x, y), (u, v)

)
= Sd(x,x,u) + Sd(y, y, v) = 

(
d(x,u) + d(y, v)

)
= Dd

(
(x, y), (u, v)

)

for all x, y,u, v ∈ X.

Lemma . [, p.] Let (X,�) be a partially ordered set. Then X × X is a partially or-
dered set with the partial order � defined by

(x, y) � (u, v) if and only if x� u, v � y.

Remark . Let X be a subset of R with the usual order. For each (x,x), (y, y) ∈ X ×
X, put z = max{x, y} and z = min{x, y}, then (x,x) � (z, z) and (y, y) � (z, z).
Therefore, for each (x,x), (y, y) ∈ X ×X, there exists (z, z) ∈ X ×X that is comparable
to (x,x) and (y, y).

Definition . [,Definition .] Let (X,�) be a partially ordered set and f , g : X×X –→
X be two maps. We say that a pair (f , g) has themixed weakly monotone property on X if,

http://www.fixedpointtheoryandapplications.com/content/2013/1/48
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for all x, y ∈ X, we have

x � f (x, y), f (y,x)� y implies f (x, y)� g
(
f (x, y), f (y,x)

)
, g

(
f (y,x), f (x, y)

) � f (y,x)

and

x � g(x, y), g(y,x)� y implies g(x, y) � f
(
g(x, y), g(y,x)

)
, f

(
g(y,x), g(x, y)

) � g(y,x).

Example . [, Example .] Let f , g :R×R –→R be two functions given by

f (x, y) = x – y, g(x, y) = x – y.

Then the pair (f , g) has the mixed weakly monotone property.

Example . [, Example .] Let f , g :R×R –→ R be two functions given by

f (x, y) = x – y + , g(x, y) = x – y.

Then f and g have the mixed monotone property but the pair (f , g) does not have the
mixed weakly monotone property.

Remark . [, Remark .] Let (X,�) be a partially ordered set; f : X × X –→ X be a
map with the mixed monotone property on X. Then for all n ∈N, the pair (f n, f n) has the
mixed weakly monotone property on X.

2 Main results
Theorem . Let (X,�,S) be a partially ordered S-metric space; f , g : X ×X –→ X be two
maps such that
. X is complete;
. The pair (f , g) has the mixed weakly monotone property on X ;

x � f (x, y), f (y,x) � y or x � g(x, y), g(y,x) � y for some x, y ∈ X ;
. There exist p,q, r, s ≥  satisfying p + q + r + s <  and

S
(
f (x, y), f (x, y), g(u, v)

)

≤ p

D

(
(x, y), (x, y), (u, v)

)
+
q

D

(
(x, y), (x, y),

(
f (x, y), f (y,x)

))

+
r

D

(
(u, v), (u, v),

(
g(u, v), g(v,u)

))
+
s

D

(
(x, y), (x, y),

(
g(u, v), g(v,u)

))

+
s

D

(
(u, v), (u, v),

(
f (x, y), f (y,x)

))
(.)

for all x, y,u, v ∈ X with x � u and y	 v where D is defined as in Lemma .;
. f or g is continuous or X has the following property:

(a) If {xn} is an increasing sequence with xn → x, then xn � x for all n ∈N;
(b) If {xn} is an decreasing sequence with xn → x, then x� xn for all n ∈N.

Then f and g have a coupled common fixed point in X.

http://www.fixedpointtheoryandapplications.com/content/2013/1/48
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Proof First we note that the roles of f and g can be interchanged in the assumptions.
We need only prove the case x � f (x, y) and f (y,x) � y, the case x � g(x, y) and
g(y,x) � y is proved similarly by interchanging the roles of f and g .
Step . We construct two Cauchy sequences in X.
Put x = f (x, y), y = f (y,x). Since (f , g) has the mixed weakly monotone property, we

have

x = f (x, y)� g
(
f (x, y), f (y,x)

)
= g(x, y)

and

y = f (y,x) 	 g
(
f (y,x), f (x, y)

)
= g(y,x).

Put x = g(x, y), y = g(y,x). Then we have

x = g(x, y) � f
(
g(x, y), g(y,x)

)
= f (x, y)

and

y = g(y,x) 	 f
(
g(y,x), g(x, y)

)
= f (y,x).

Continuously, for all n ∈N, we put

xn+ = f (xn, yn), yn+ = f (yn,xn),

xn+ = g(xn+, yn+), yn+ = g(yn+,xn+)
(.)

that satisfy

x � x � · · · � xn � · · · and y 	 y 	 · · · 	 yn 	 · · · . (.)

We will prove that {xn} and {yn} are two Cauchy sequences. For all n ∈ N, it follows
from (.) that

S(xn+,xn+,xn+)

= S
(
f (xn, yn), f (xn, yn), g(xn+, yn+)

)

≤ p

D

(
(xn, yn), (xn, yn), (xn+, yn+)

)

+
q

D

(
(xn, yn), (xn, yn),

(
f (xn, yn), f (yn,xn)

))

+
r

D

(
(xn+, yn+), (xn+, yn+),

(
g(xn+, yn+), g(yn+,xn+)

))

+
s

D

(
(xn, yn), (xn, yn),

(
g(xn+, yn+), g(yn+,xn+)

))

+
s

D

(
(xn+, yn+), (xn+, yn+),

(
f (xn, yn), f (yn,xn)

))
.

http://www.fixedpointtheoryandapplications.com/content/2013/1/48
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By using (.) we get

S(xn+,xn+,xn+) ≤ p

D

(
(xn, yn), (xn, yn), (xn+, yn+)

)

+
q

D

(
(xn, yn), (xn, yn), (xn+, yn+)

)

+
r

D

(
(xn+, yn+), (xn+, yn+), (xn+, yn+)

)

+
s

D

(
(xn, yn), (xn, yn), (xn+, yn+)

)

+
s

D

(
(xn+, yn+), (xn+, yn+), (xn+, yn+)

)

=
p + q


D
(
(xn, yn), (xn, yn), (xn+, yn+)

)

+
r

D

(
(xn+, yn+), (xn+, yn+), (xn+, yn+)

)

+
s

D

(
(xn, yn), (xn, yn), (xn+, yn+)

)

≤ p + q + s


D
(
(xn, yn), (xn, yn), (xn+, yn+)

)

+
r + s


D
(
(xn+, yn+), (xn+, yn+), (xn+, yn+)

)
.

That is,

S(xn+,xn+,xn+)

≤ p + q + s


(
S(xn,xn,xn+) + S(yn, yn, yn+)

)

+
r + s


(
S(xn+,xn+,xn+) + S(yn+, yn+, yn+)

)
. (.)

Analogously to (.), we have

S(yn+, yn+, yn+)

≤ p + q + s


(
S(yn, yn, yn+) + S(xn,xn,xn+)

)

+
r + s


(
S(yn+, yn+, yn+) + S(xn+,xn+,xn+)

)
. (.)

It follows from (.) and (.) that

S(xn+,xn+,xn+) + S(yn+, yn+, yn+)

≤ p + q + s
 – (r + s)

(
S(xn,xn,xn+) + S(yn, yn, yn+)

)
. (.)

For all n ∈ N, by interchanging the roles of f and g and using (.) again, we have

S(xn+,xn+,xn+)

= S
(
g(xn+, yn+), g(xn+, yn+), f (xn+, yn+)

)

≤ p

D

(
(xn+, yn+), (xn+, yn+), (xn+, yn+)

)

http://www.fixedpointtheoryandapplications.com/content/2013/1/48
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+
q

D

(
(xn+, yn+), (xn+, yn+),

(
g(xn+, yn+), g(yn+,xn+)

))

+
r

D

(
(xn+, yn+), (xn+, yn+),

(
f (xn+, yn+), f (yn+,xn+)

))

+
s

D

(
(xn+, yn+), (xn+, yn+),

(
f (xn+, yn+), f (yn+,xn+)

))

+
s

D

(
(xn+, yn+), (xn+, yn+),

(
g(xn+, yn+), g(yn+,xn+)

))
.

By using (.) we get

S(xn+,xn+,xn+) ≤ p

D

(
(xn+, yn+), (xn+, yn+), (xn+, yn+)

)

+
q

D

(
(xn+, yn+), (xn+, yn+), (xn+, yn+)

)

+
r

D

(
(xn+, yn+), (xn+, yn+), (xn+, yn+)

)

+
s

D

(
(xn+, yn+), (xn+, yn+), (xn+, yn+)

)

+
s

D

(
(xn+, yn+), (xn+, yn+), (xn+, yn+)

)

=
p + q


D
(
(xn+, yn+), (xn+, yn+), (xn+, yn+)

)

+
r

D

(
(xn+, yn+), (xn+, yn+), (xn+, yn+)

)

+
s

D

(
(xn+, yn+), (xn+, yn+), (xn+, yn+)

)

≤ p + q + s


D
(
(xn+, yn+), (xn+, yn+), (xn+, yn+)

)

+
r + s


D
(
(xn+, yn+), (xn+, yn+), (xn+, yn+)

)
.

That is,

S(xn+,xn+,xn+)

≤ p + q + s


(
S(xn+,xn+,xn+) + S(yn+, yn+, yn+)

)

+
r + s


(
S(xn+,xn+,xn+) + S(yn+, yn+, yn+)

)
. (.)

Analogously to (.), we have

S(yn+, yn+, yn+)

≤ p + q + s


(
S(yn+, yn+, yn+) + S(xn+,xn+,xn+)

)

+
r + s


(
S(yn+, yn+, yn+) + S(xn+,xn+,xn+)

)
. (.)

It follows from (.) and (.) that

S(xn+,xn+,xn+) + S(yn+, yn+, yn+)

≤ p + q + s
 – (r + s)

(
S(xn+,xn+,xn+) + S(yn+, yn+, yn+)

)
. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/48
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For all n ∈N, (.) and (.) combine to give

S(xn+,xn+,xn+) + S(yn+, yn+, yn+)

≤ p + q + s
 – (r + s)

(
S(xn+,xn+,xn+) + S(yn+, yn+, yn+)

)

≤
(

p + q + s
 – (r + s)

)(
S(xn,xn,xn+) + S(yn, yn, yn+)

)
. (.)

Now we have

S(xn+,xn+,xn+) + S(yn+, yn+, yn+)

≤ p + q + s
 – (r + s)

(
S(xn,xn,xn+) + S(yn, yn, yn+)

)

≤
(

p + q + s
 – (r + s)

)(
S(xn–,xn–,xn–) + S(yn–, yn–, yn–)

)
· · ·

≤
(

p + q + s
 – (r + s)

)n+(
S(x,x,x) + S(y, y, y)

)
(.)

and

S(xn+,xn+,xn+) + S(yn+, yn+, yn+)

≤
(

p + q + s
 – (r + s)

)(
S(xn,xn,xn+) + S(yn, yn, yn+)

)

≤
(

p + q + s
 – (r + s)

)(
S(xn–,xn–,xn–) + S(yn–, yn–, yn–)

)
· · ·

≤
(

p + q + s
 – (r + s)

)n+(
S(x,x,x) + S(y, y, y)

)
. (.)

For all n,m ∈N with n≤ m, by using Lemma . and (.), (.), we have

S(xn+,xn+,xm+) + S(yn+, yn+, ym+)

≤ (
S(xn+,xn+,xn+) + S(yn+, yn+, yn+)

)
+

(
S(xn+,xn+,xm+) + S(yn+, yn+, ym+)

)
≤ (

S(xn+,xn+,xn+) + S(yn+, yn+, yn+)
)

+
(
S(xn+,xn+,xn+) + S(yn+, yn+, yn+)

)
+ · · · + (

S(xm–,xm–,xm) + S(ym–, ym–, ym)
)

+
(
S(xm,xm,xm+) + S(ym, ym, ym+)

)
≤ (

S(xn+,xn+,xn+) + S(yn+, yn+, yn+)
)

+ · · · + (
S(xm,xm,xm+) + S(ym, ym, ym+)

)

≤
[(

p + q + s
 – (r + s)

)n+

+ · · · +
(

p + q + s
 – (r + s)

)m]

http://www.fixedpointtheoryandapplications.com/content/2013/1/48


Dung Fixed Point Theory and Applications 2013, 2013:48 Page 10 of 17
http://www.fixedpointtheoryandapplications.com/content/2013/1/48

× (
S(x,x,x) + S(y, y, y)

)

≤ ( p+q+s
–(r+s) )

n+

 – p+q+s
–(r+s)

(
S(x,x,x) + S(y, y, y)

)
.

Similarly, we have

S(xn,xn,xm+) + S(yn, yn, ym+)

≤
[(

p + q + s
 – (r + s)

)n

+ · · · +
(

p + q + s
 – (r + s)

)m](
S(x,x,x) + S(y, y, y)

)

≤ ( p+q+s
–(r+s) )

n

 – p+q+s
–(r+s)

(
S(x,x,x) + S(y, y, y)

)

and

S(xn,xn,xm) + S(yn, yn, ym)

≤
[(

p + q + s
 – (r + s)

)n

+ · · · +
(

p + q + s
 – (r + s)

)m–](
S(x,x,x) + S(y, y, y)

)

≤ ( p+q+s
–(r+s) )

n

 – p+q+s
–(r+s)

(
S(x,x,x) + S(y, y, y)

)

and

S(xn+,xn+,xm) + S(yn+, yn+, ym)

≤
[(

p + q + s
 – (r + s)

)n+

+ · · · +
(

p + q + s
 – (r + s)

)m–](
S(x,x,x) + S(y, y, y)

)

≤ ( p+q+s
–(r+s) )

n+

 – p+q+s
–(r+s)

(
S(x,x,x) + S(y, y, y)

)
.

Hence, for all n,m ∈N with n≤ m, it follows that

S(xn,xn,xm) + S(yn, yn, ym) ≤
( p+q+s
–(r+s) )

n

 – p+q+s
–(r+s)

(
S(x,x,x) + S(y, y, y)

)
.

Since  ≤ p+q+s
–(r+s) < , taking the limit as n,m → ∞, we get

lim
n,m→∞

(
S(xn,xn,xm) + S(yn, yn, ym)

)
= .

It implies that

lim
n,m→∞S(xn,xn,xm) = lim

n,m→∞S(yn, yn, ym) = .

Therefore, {xn} and {yn} are two Cauchy sequences in X. Since X is complete, there exist
x, y ∈ X such that xn → x and yn → y in X as n→ ∞.
Step . We prove that (x, y) is a coupled common fixed point of f and g . We consider the

following two cases.

http://www.fixedpointtheoryandapplications.com/content/2013/1/48
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Case .. f is continuous. We have

x = lim
n→∞xn+ = lim

n→∞ f (xn, yn) = f
(
lim
n→∞xn, limn→∞ yn

)
= f (x, y)

and

y = lim
n→∞ yn+ = lim

n→∞ f (yn,xn) = f
(
lim
n→∞ yn, limn→∞xn

)
= f (y,x).

Now using (.) we have

S
(
f (x, y), f (x, y), g(x, y)

)
+ S

(
f (y,x), f (y,x), g(y,x)

)

≤ p

D

(
(x, y), (x, y), (x, y)

)
+
q

D

(
(x, y), (x, y),

(
f (x, y), f (y,x)

))

+
r

D

(
(x, y), (x, y),

(
g(x, y), g(y,x)

))
+
s

D

(
(x, y), (x, y),

(
g(x, y), g(y,x)

))

+
s

D

(
(x, y), (x, y),

(
f (x, y), f (y,x)

))

+
p

D

(
(y,x), (y,x), (y,x)

)
+
q

D

(
(y,x), (y,x),

(
f (y,x), f (x, y)

))

+
r

D

(
(y,x), (y,x),

(
g(y,x), g(x, y)

))
+
s

D

(
(y,x), (y,x),

(
g(y,x), g(x, y)

))

+
s

D

(
(y,x), (y,x),

(
f (y,x), f (x, y)

))

=
p

D

(
(x, y), (x, y), (x, y)

)
+
q

D

(
(x, y), (x, y), (x, y)

)

+
r

D

(
(x, y), (x, y),

(
g(x, y), g(y,x)

))
+
s

D

(
(x, y), (x, y),

(
g(x, y), g(y,x)

))

+
s

D

(
(x, y), (x, y), (x, y)

)

+
p

D

(
(y,x), (y,x), (y,x)

)
+
q

D

(
(y,x), (y,x), (y,x)

)

+
r

D

(
(y,x), (y,x),

(
g(y,x), g(x, y)

))
+
s

D

(
(y,x), (y,x),

(
g(y,x), g(x, y)

))

+
s

D

(
(y,x), (y,x), (y,x)

)

=
r

D

(
(x, y), (x, y),

(
g(x, y), g(y,x)

))
+
s

D

(
(x, y), (x, y),

(
g(x, y), g(y,x)

))

+
r

D

(
(y,x), (y,x),

(
g(y,x), g(x, y)

))
+
s

D

(
(y,x), (y,x),

(
g(y,x), g(x, y)

))
.

Therefore,

S
(
f (x, y), f (x, y), g(x, y)

)
+ S

(
f (y,x), f (y,x), g(y,x)

)
≤ (r + s)

(
S
(
x,x, g(x, y)

)
+ S

(
y, y, g(y,x)

))
.

That is,

S
(
x,x, g(x, y)

)
+ S

(
y, y, g(y,x)

) ≤ (r + s)
(
S
(
x,x, g(x, y)

)
+ S

(
y, y, g(y,x)

))
.

http://www.fixedpointtheoryandapplications.com/content/2013/1/48
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Since  ≤ r+s < , we get S(x,x, g(x, y)) = S(y, y, g(y,x)) = . That is, g(x, y) = x and g(y,x) = y.
Therefore, (x, y) is a coupled common fixed point of f and g .
Case .. g is continuous. We can also prove that (x, y) is a coupled common fixed point

of f and g similarly as in Case ..
Case .. X satisfies two assumptions (a) and (b). Then by (.) we get xn � x and y� yn

for all n ∈N. By using Lemma . and Lemma ., we have

D
(
(x, y), (x, y),

(
f (x, y), f (y,x)

))
≤ D

(
(x, y), (x, y), (xn+, yn+)

)
+D

(
(xn+, yn+), (xn+, yn+),

(
f (x, y), f (y,x)

))
= D

(
(x, y), (x, y), (xn+, yn+)

)
+D

((
g(xn+, yn+), g(yn+,xn+)

)
,

(
g(xn+, yn+), g(yn+,xn+)

)
,
(
f (x, y), f (y,x)

))
≤ D

(
(x, y), (x, y), (xn+, yn+)

)
+ S

(
g(xn+, yn+), g(xn+, yn+), f (x, y)

)
+ S

(
g(yn+,xn+), g(yn+,xn+), f (y,x)

)
= S(x,x,xn+) + S(y, y, yn+) + S

(
g(xn+, yn+), g(xn+, yn+), f (x, y)

)
+ S

(
f (y,x), f (y,x), g(yn+,xn+)

)
. (.)

By interchanging the roles of f and g and using (.), we have

S
(
g(xn+, yn+), g(xn+, yn+), f (x, y)

)

≤ p

D

(
(xn+, yn+), (xn+, yn+), (x, y)

)

+
q

D

(
(xn+, yn+), (xn+, yn+),

(
g(xn+, yn+), g(yn+,xn+)

))

+
r

D

(
(x, y), (x, y),

(
f (x, y), f (y,x)

))

+
s

D

(
(xn+, yn+), (xn+, yn+),

(
f (x, y), f (y,x)

))

+
s

D

(
(x, y), (x, y),

(
g(xn+, yn+), g(yn+,xn+)

))

=
p

D

(
(xn+, yn+), (xn+, yn+), (x, y)

)

+
q

D

(
(xn+, yn+), (xn+, yn+), (xn+, yn+)

)

+
r

D

(
(x, y), (x, y),

(
f (x, y), f (y,x)

))

+
s

D

(
(xn+, yn+), (xn+, yn+),

(
f (x, y), f (y,x)

))

+
s

D

(
(x, y), (x, y), (xn+, yn+)

)
. (.)

Again, by using (.), we have

S
(
f (y,x), f (y,x), g(yn+,xn+)

)

≤ p

D

(
(y,x), (y,x), (yn+,xn+)

)
+
q

D

(
(y,x), (y,x),

(
f (y,x), f (x, y)

))

http://www.fixedpointtheoryandapplications.com/content/2013/1/48
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+
r

D

(
(yn+,xn+), (yn+,xn+),

(
g(yn+,xn+), g(xn+, yn+)

))

+
s

D

(
(y,x), (y,x),

(
g(yn+,xn+), g(xn+, yn+)

))

+
s

D

(
(yn+,xn+), (yn+,xn+),

(
f (y,x), f (x, y)

))

=
p

D

(
(y,x), (y,x), (yn+,xn+)

)
+
q

D

(
(y,x), (y,x),

(
f (y,x), f (x, y)

))

+
r

D

(
(yn+,xn+), (yn+,xn+), (yn+,xn+)

)
+
s

D

(
(y,x), (y,x), (yn+,xn+)

)

+
s

D

(
(yn+,xn+), (yn+,xn+),

(
f (y,x), f (x, y)

))
. (.)

It follows from (.), (.) and (.) that

D
(
(x, y), (x, y),

(
f (x, y), f (y,x)

))

≤ S(x,x,xn+) + S(y, y, yn+) +
p

D

(
(xn+, yn+), (xn+, yn+), (x, y)

)

+
q

D

(
(xn+, yn+), (xn+, yn+), (xn+, yn+)

)
+
r

D

(
(x, y), (x, y),

(
f (x, y), f (y,x)

))

+
s

D

(
(xn+, yn+), (xn+, yn+),

(
f (x, y), f (y,x)

))
+
s

D

(
(x, y), (x, y), (xn+, yn+)

)

+
p

D

(
(y,x), (y,x), (yn+,xn+)

)
+
q

D

(
(y,x), (y,x),

(
f (y,x), f (x, y)

))

+
r

D

(
(yn+,xn+), (yn+,xn+), (yn+,xn+)

)
+
s

D

(
(y,x), (y,x), (yn+,xn+)

)

+
s

D

(
(yn+,xn+), (yn+,xn+),

(
f (y,x), f (x, y)

))
. (.)

By using Lemma . and taking the limit as n→ ∞ in (.), we have

D
(
(x, y), (x, y),

(
f (x, y), f (y,x)

))

≤ S(x,x,x) + S(y, y, y) +
p

D

(
(x, y), (x, y), (x, y)

)
+
q

D

(
(x, y), (x, y), (x, y)

)

+
r

D

(
(x, y), (x, y),

(
f (x, y), f (y,x)

))
+
s

D

(
(x, y), (x, y),

(
f (x, y), f (y,x)

))

+
s

D

(
(x, y), (x, y), (x, y)

)
+
p

D

(
(y,x), (y,x), (y,x)

)

+
q

D

(
(y,x), (y,x),

(
f (y,x), f (x, y)

))
+
r

D

(
(y,x), (y,x), (y,x)

)

+
s

D

(
(y,x), (y,x), (y,x)

)
+
s

D

(
(y,x), (y,x),

(
f (y,x), f (x, y)

))

=
r + s


D
(
(x, y), (x, y),

(
f (x, y), f (y,x)

))
+
q + s


D
(
(y,x), (y,x),

(
f (y,x), f (x, y)

))
. (.)

It implies that

S
(
x,x, f (x, y)

)
+ S

(
y, y, f (y,x)

)

≤ r + s


(
S
(
x,x, f (x, y)

)
+

(
y, y, f (y,x)

))
+
q + s


(
S
(
y, y, f (y,x)

)
+ S

(
x,x, f (x, y)

))

=
r + q + s


(
S
(
x,x, f (x, y)

)
+

(
y, y, f (y,x)

))
. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/48
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Since r+q+s
 < , we have S(x,x, f (x, y))+S(y, y, f (y,x)) = , that is, f (x, y) = x and f (y,x) = y.

Similarly, one can show that g(x, y) = x and g(y,x) = y. This proves that (x, y) is a coupled
common fixed point of f and g . �

From Theorem ., we have following corollaries.

Corollary . [, Theorems . and .] Let (X,�,d) be a partially orderedmetric space;
f , g : X ×X –→ X be two maps such that
. X is complete;
. The pair (f , g) has the mixed weakly monotone property on X ; x � f (x, y),

f (y,x) � y or x � g(x, y), g(y,x) � y for some x, y ∈ X ;
. There exist p,q, r, s ≥  satisfying p + q + r + s <  and

d
(
f (x, y), g(u, v)

)

≤ p

Dd

(
(x, y), (u, v)

)
+
q

Dd

(
(x, y),

(
f (x, y), f (y,x)

))

+
r

Dd

(
(u, v),

(
g(u, v), g(v,u)

))
+
s

Dd

(
(x, y),

(
g(u, v), g(v,u)

))

+
s

Dd

(
(u, v),

(
f (x, y), f (y,x)

))
(.)

for all x, y,u, v ∈ X with x � u and y	 v, where Dd is defined as in Lemma .;
. f or g is continuous or X has the following property:

(a) If {xn} is an increasing sequence with xn → x, then xn � x for all n ∈N;
(b) If {xn} is an decreasing sequence with xn → x, then x� xn for all n ∈N.

Then f and g have a coupled common fixed point in X.

Proof It is a direct consequence of Lemma ., Remark . and Theorem .. �

For similar results of the following for maps on metric spaces and cone metric spaces,
the readers may refer to [, Theorems ., ., . and .] and [, Theorem .].

Corollary . Let (X,�,S) be a partially ordered S-metric space and f : X ×X –→ X be a
map such that
. X is complete;
. f has the mixed monotone property on X ; x � f (x, y) and f (y,x) � y for some

x, y ∈ X ;
. There exist p,q, r, s ≥  satisfying p + q + r + s <  and

S
(
f (x, y), f (x, y), f (u, v)

)

≤ p

D

(
(x, y), (x, y), (u, v)

)
+
q

D

(
(x, y), (x, y),

(
f (x, y), f (y,x)

))

+
r

D

(
(u, v), (u, v),

(
f (u, v), f (v,u)

))
+
s

D

(
(x, y), (x, y),

(
f (u, v), f (v,u)

))

+
s

D

(
(u, v), (u, v),

(
f (x, y), f (y,x)

))
(.)

for all x, y,u, v ∈ X with x � u and y	 v;
. f is continuous or X has the following property:
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(a) If {xn} is an increasing sequence with xn → x, then xn � x for all n ∈N;
(b) If {xn} is an decreasing sequence with xn → x, then x� xn for all n ∈N.

Then f has a coupled fixed point in X.

Proof By choosing g = f in Theorem . and using Remark ., we get the conclusion. �

Corollary . Let (X,�,S) be a partially ordered S-metric space and f : X ×X –→ X be a
map such that
. X is complete;
. f has the mixed monotone property on X ; x � f (x, y) and f (y,x) � y for some

x, y ∈ X ;
. There exists k ∈ [, ) satisfying

S
(
f (x, y), f (x, y), f (u, v)

) ≤ k

(
S(x,x,u) + S(y, y, v)

)
(.)

for all x, y,u, v ∈ X with x � u and y	 v;
. f is continuous or X has the following property:

(a) If {xn} is an increasing sequence with xn → x, then xn � x for all n ∈N;
(b) If {xn} is an decreasing sequence with xn → x, then x� xn for all n ∈N.

Then f has a coupled fixed point in X.

Proof By choosing g = f and p = k, q = r = s =  in Theorem . and using Remark ., we
get the conclusion. �

Corollary . Assume that X is a totally ordered set in addition to the hypotheses of The-
orem .; in particular, Corollary ., Corollary .. Then f and g have a unique coupled
common fixed point (x, y) and x = y.

Proof By Theorem ., f and g have a coupled common fixed point (x, y). Let (z, t) be
another coupled commonfixed point of f and g .Without loss of generality, wemay assume
that (x, y)� (z, t). Then by (.) and Lemma ., we have

D
(
(x, y), (x, y), (z, t)

)
= S(x,x, z) + S(y, y, t)

= S
(
f (x, y), f (x, y), g(z, t)

)
+ S

(
f (y,x), f (y,x), g(t, z)

)

≤ p

D

(
(x, y), (x, y), (z, t)

)
+
q

D

(
(x, y), (x, y),

(
f (x, y), f (y,x)

))

+
r

D

(
(z, t), (z, t),

(
g(z, t), g(t, z)

))
+
s

D

(
(x, y), (x, y),

(
g(z, t), g(t, z)

))

+
s

D

(
(z, t), (z, t),

(
f (x, y), f (y,x)

))
+
p

D

(
(y,x), (y,x), (t, z)

)

+
q

D

(
(y,x), (y,x),

(
f (y,x), f (x, y)

))
+
r

D

(
(t, z), (t, z),

(
g(t, z), g(z, t)

))

+
s

D

(
(y,x), (y,x),

(
g(t, z), g(z, t)

))
+
s

D

(
(t, z), (t, z),

(
f (y,x), f (x, y)

))

=
p

D

(
(x, y), (x, y), (z, t)

)
+
q

D

(
(x, y), (x, y), (x, y)

)
+
r

D

(
(z, t), (z, t), (z, t)

)
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+
s

D

(
(x, y), (x, y), (z, t)

)
+
s

D

(
(z, t), (z, t), (x, y)

)
+
p

D

(
(y,x), (y,x), (t, z)

)

+
q

D

(
(y,x), (y,x), (y,x)

)
+
r

D

(
(t, z), (t, z), (t, z)

)
+
s

D

(
(y,x), (y,x), (t, z)

)

+
s

D

(
(t, z), (t, z), (y,x)

)

=
p

D

(
(x, y), (x, y), (z, t)

)
+
s

D

(
(x, y), (x, y), (z, t)

)
+
s

D

(
(z, t), (z, t), (x, y)

)

+
p

D

(
(y,x), (y,x), (t, z)

)
+
s

D

(
(y,x), (y,x), (t, z)

)
+
s

D

(
(t, z), (t, z), (y,x)

)

=
p + s


(
D

(
(x, y), (x, y), (z, t)

)
+D

(
(y,x), (y,x), (t, z)

))

= (p + s)
(
S(x,x, z) + S(y, y, t)

)
.

Since p + s < , we have S(x,x, z) + S(y, y, t) = . Then x = z and y = t. This proves that the
coupled common fixed point of f and g is unique.
Moreover, by using (.) and Lemma . again, we get

S(x,x, y) = S
(
f (x, y), f (x, y), g(y,x)

)

≤ p

D

(
(x, y), (x, y), (y,x)

)
+
q

D

(
(x, y), (x, y),

(
f (x, y), f (y,x)

))

+
r

D

(
(y,x), (y,x),

(
g(y,x), g(x, y)

))
+
s

D

(
(x, y), (x, y),

(
g(y,x), g(x, y)

))

+
s

D

(
(y,x), (y,x),

(
f (x, y), f (y,x)

))

=
p

D

(
(x, y), (x, y), (y,x)

)
+
s

D

(
(x, y), (x, y), (y,x)

)
+
s

D

(
(y,x), (y,x), (x, y)

)

=
p + s


D
(
(x, y), (x, y), (y,x)

)
= (p + s)S(x,x, y).

Since p + s < , we get S(x,x, y) = , that is, x = y. �

Finally, we give an example to demonstrate the validity of the above results.

Example . Let X =R with the S-metric as in Example . and the usual order ≤. Then
X is a totally ordered, complete S-metric space. For all x, y ∈ X, put

f (x, y) = g(x, y) =
x – y + 


.

Then the pair (f , g) has the mixed weakly monotone property and

S
(
f (x, y), f (x, y), g(u, v)

)
= 

∣∣f (x, y) – g(u, v)
∣∣

= 
∣∣∣∣x – y + 


–
u – v + 



∣∣∣∣
≤ 


|x – u| + 


|y – v|

≤ 


(|x – u| + |y – v|).
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Then the contraction (.) is satisfied with p = 
 and q = r = s = . Note that other as-

sumptions of Corollary . are also satisfied and (, ) is the unique common fixed point
of f and g .
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