19 research outputs found

    Treatment-aware Diffusion Probabilistic Model for Longitudinal MRI Generation and Diffuse Glioma Growth Prediction

    Full text link
    Diffuse gliomas are malignant brain tumors that grow widespread through the brain. The complex interactions between neoplastic cells and normal tissue, as well as the treatment-induced changes often encountered, make glioma tumor growth modeling challenging. In this paper, we present a novel end-to-end network capable of generating future tumor masks and realistic MRIs of how the tumor will look at any future time points for different treatment plans. Our approach is based on cutting-edge diffusion probabilistic models and deep-segmentation neural networks. We included sequential multi-parametric magnetic resonance images (MRI) and treatment information as conditioning inputs to guide the generative diffusion process. This allows for tumor growth estimates at any given time point. We trained the model using real-world postoperative longitudinal MRI data with glioma tumor growth trajectories represented as tumor segmentation maps over time. The model has demonstrated promising performance across a range of tasks, including the generation of high-quality synthetic MRIs with tumor masks, time-series tumor segmentations, and uncertainty estimates. Combined with the treatment-aware generated MRIs, the tumor growth predictions with uncertainty estimates can provide useful information for clinical decision-making.Comment: 13 pages, 10 figures, 2 tables, 2 agls, preprints in the IEEE trans. format for submission to IEEE-TM

    Self-reported sleep relates to hippocampal atrophy across the adult lifespan: results from the Lifebrain consortium.

    Get PDF
    OBJECTIVES: Poor sleep is associated with multiple age-related neurodegenerative and neuropsychiatric conditions. The hippocampus plays a special role in sleep and sleep-dependent cognition, and accelerated hippocampal atrophy is typically seen with higher age. Hence, it is critical to establish how the relationship between sleep and hippocampal volume loss unfolds across the adult lifespan. METHODS: Self-reported sleep measures and MRI-derived hippocampal volumes were obtained from 3105 cognitively normal participants (18-90 years) from major European brain studies in the Lifebrain consortium. Hippocampal volume change was estimated from 5116 MRIs from 1299 participants for whom longitudinal MRIs were available, followed up to 11 years with a mean interval of 3.3 years. Cross-sectional analyses were repeated in a sample of 21,390 participants from the UK Biobank. RESULTS: No cross-sectional sleep-hippocampal volume relationships were found. However, worse sleep quality, efficiency, problems, and daytime tiredness were related to greater hippocampal volume loss over time, with high scorers showing 0.22% greater annual loss than low scorers. The relationship between sleep and hippocampal atrophy did not vary across age. Simulations showed that the observed longitudinal effects were too small to be detected as age-interactions in the cross-sectional analyses. CONCLUSIONS: Worse self-reported sleep is associated with higher rates of hippocampal volume decline across the adult lifespan. This suggests that sleep is relevant to understand individual differences in hippocampal atrophy, but limited effect sizes call for cautious interpretation

    Parallel but independent reduction of emotional awareness and corpus callosum connectivity in older age

    No full text
    Differential functional specialization of the left and right hemispheres for linguistic and emotional functions, respectively, suggest that interhemispheric communication via the corpus callosum is critical for emotional awareness. Accordingly, it has been hypothesized that the age-related decline in callosal connectivity mediates the frequently demonstrated reduction in emotional awareness in older age. The present study tests this hypothesis in a sample of 307 healthy individuals between 20–89 years using combined structural and diffusion-tensor magnetic resonance imaging (MRI) of the corpus callosum. As assumed, inter-hemispheric connectivity (midsagittal callosal area and thickness, as well as fractional anisotropy, FA) and emotional awareness (i.e., increase in externally-oriented thinking, EOT; assessed with the Toronto Alexithymia Scale, TAS-20) were found to be reduced in older (> 60 years) compared to younger participants. Furthermore, relating callosal measures to emotional awareness, FA in the genu of the corpus callosum was found to be negatively correlated with EOT in male participants. Thus, “stronger” structural connectivity (higher FA) was related with higher emotional awareness (lower EOT). However, a formal mediation analysis did not support the notion that age-related decline in emotional awareness is mediated by the corpus callosum. Thus, the observed reduction of emotional awareness and callosal connectivity in older age likely reflects parallel but not inter-dependent processes

    Parallel but independent reduction of emotional awareness and corpus callosum connectivity in older age.

    Get PDF
    Differential functional specialization of the left and right hemispheres for linguistic and emotional functions, respectively, suggest that interhemispheric communication via the corpus callosum is critical for emotional awareness. Accordingly, it has been hypothesized that the age-related decline in callosal connectivity mediates the frequently demonstrated reduction in emotional awareness in older age. The present study tests this hypothesis in a sample of 307 healthy individuals between 20-89 years using combined structural and diffusion-tensor magnetic resonance imaging (MRI) of the corpus callosum. As assumed, inter-hemispheric connectivity (midsagittal callosal area and thickness, as well as fractional anisotropy, FA) and emotional awareness (i.e., increase in externally-oriented thinking, EOT; assessed with the Toronto Alexithymia Scale, TAS-20) were found to be reduced in older (> 60 years) compared to younger participants. Furthermore, relating callosal measures to emotional awareness, FA in the genu of the corpus callosum was found to be negatively correlated with EOT in male participants. Thus, "stronger" structural connectivity (higher FA) was related with higher emotional awareness (lower EOT). However, a formal mediation analysis did not support the notion that age-related decline in emotional awareness is mediated by the corpus callosum. Thus, the observed reduction of emotional awareness and callosal connectivity in older age likely reflects parallel but not inter-dependent processes

    Anterior and posterior hippocampus macro‐ and microstructure across the lifespan in relation to memory—A longitudinal study

    No full text
    There is evidence for a hippocampal long axis anterior–posterior (AP) differentiation in memory processing, which may have implications for the changes in episodic memory performance seen across development and aging. The hippocampus shows substantial structural changes with age, but the lifespan trajectories of hippocampal sub‐regions along the AP axis are not established. The aim of the present study was to test whether the micro‐ and macro‐structural age‐trajectories of the anterior (aHC) and posterior (pHC) hippocampus are different. In a single‐center longitudinal study, 1,790 cognitively healthy participants, 4.1–93.4 years of age, underwent a total of 3,367 MRI examinations and 3,033 memory tests sessions over 1–6 time points, spanning an interval up to 11.1 years. T1‐weighted scans were used to estimate the volume of aHC and pHC (macrostructure), and diffusion tensor imaging to measure mean diffusion (MD, microstructure) within each region. We found that the macro‐ and microstructural lifespan‐trajectories of aHC and pHC were clearly distinguishable, with partly common and partly unique variance shared with age. aHC showed a protracted period of microstructural development, while pHC microstructural development as indexed by MD was more or less completed in early childhood. In contrast, pHC showed larger unique aging‐related changes. An aHC–pHC difference was also observed for volume, with pHC changing relatively more with higher age. All regions showed age‐dependent relationships with episodic memory. aHC micro‐ and macrostructure was significantly related to verbal memory independently of age, but the relationships were still strongest among the older participants. We suggest that memory processes supported by each sub‐region improve or decline in concert with volumetric and microstructural changes in the same age‐period. Future research should disentangle the lifespan relationship between changes in these structural properties and different memory processes, encoding versus retrieval in particular, as well as other cognitive functions depending on the hippocampal long‐axis specialization

    A longitudinal study of computerized cognitive training in stroke patients - effects on cognitive function and white matter

    No full text
    Background Computerized cognitive training is suggested to enhance attention and working memory functioning following stroke, but effects on brain and behavior are not sufficiently studied and longitudinal studies assessing brain and behavior relationships are scarce. Objective The study objectives were to investigate relations between neuropsychological performance post-stroke and white matter microstructure measures derived from diffusion tensor imaging (DTI), including changes after 6 weeks of working memory training. Methods In this experimental training study, 26 stroke patients underwent DTI and neuropsychological tests at 3 time points – before and after a passive phase of 6 weeks, and again after 6 weeks of working memory training (Cogmed QM). Fractional anisotropy (FA) was extracted from stroke-free brain areas to assess the white matter microstructure. Twenty-two participants completed the majority of training (≥18/25 sessions) and were entered into longitudinal analyses. Results Significant correlations between FA and baseline cognitive functions were observed (r = 0.58, p = 0.004), however, no evidence was found of generally improved cognitive functions following training or of changes in white matter microstructure. Conclusions While white matter microstructure related to baseline cognitive function in stroke patients, the study revealed no effect on cognitive functions or microstructural changes in white matter in relation to computerized working memory training

    Volumetric and microstructural regional changes of the hippocampus underlying development of recall performance after extended retention intervals

    No full text
    Performance on recall tests improves through childhood and adolescence, in part due to structural maturation of the medial temporal cortex. Although partly different processes support successful recall over shorter vs. longer intervals, recall is usually tested after less than an hour. The aim of the present study was to test whether there are unique developmental changes in recall performance using extended retention intervals, and whether these are related to structural maturation of sub-regions of the hippocampus. 650 children and adolescents from 4.1 to 24.8 years were assessed in total 962 times (mean interval ≈ 1.8 years). The California Verbal Learning Test (CVLT) and the Rey Complex Figure Test (CFT) were used. Recall was tested 30 min and ≈ 10 days after encoding. We found unique developmental effects on recall in the extended retention interval condition independently of 30 min recall performance. For CVLT, major improvements happened between 10 and 15 years. For CFT, improvement was linear and was accounted for by visuo-constructive abilities. The relationships did not show anterior-posterior hippocampal axis differences. In conclusion, performance on recall tests using extended retention intervals shows unique development, likely due to changes in encoding depth or efficacy, or improvements of long-term consolidation processes

    Prosocial behavior relates to the rate and timing of cortical thinning from adolescence to young adulthood

    No full text
    Prosocial behavior, or voluntary actions that intentionally benefit others, relate to desirable developmental outcomes such as peer acceptance, while lack of prosocial behavior has been associated with several neurodevelopmental disorders. Mapping the biological foundations of prosociality may thus aid our understanding of both normal and abnormal development, yet how prosociality relates to cortical development is largely unknown. Here, relations between prosociality, as measured by the Strengths and Difficulties Questionnaire (self-report), and changes in thickness across the cortical mantle were examined using mixed-effects models. The sample consisted of 169 healthy individuals (92 females) aged 12-26 with repeated MRI from up to 3 time points, at approximately 3-year intervals (301 scans). In regions associated with social cognition and behavioral control, higher prosociality was associated with greater cortical thinning during early-to-middle adolescence, followed by attenuation of this process during the transition to young adulthood. Comparatively, lower prosociality was related to initially slower thinning, followed by comparatively protracted thinning into the mid-twenties. This study showed that prosocial behavior is associated with regional development of cortical thickness in adolescence and young adulthood. The results suggest that the rate of thinning in these regions, as well as its timing, may be factors related to prosocial behavior

    The Impact of MRI Features and Observer Confidence on the Treatment Decision-Making for Patients with Untreated Glioma.

    No full text
    In a blind, dual-center, multi-observer setting, we here identify the pre-treatment radiologic features by Magnetic Resonance Imaging (MRI) associated with subsequent treatment options in patients with glioma. Study included 220 previously untreated adult patients from two institutions (94 + 126 patients) with a histopathologically confirmed diagnosis of glioma after surgery. Using a blind, cross-institutional and randomized setup, four expert neuroradiologists recorded radiologic features, suggested glioma grade and corresponding confidence. The radiologic features were scored using the Visually AcceSAble Rembrandt Images (VASARI) standard. Results were retrospectively compared to patient treatment outcomes. Our findings show that patients receiving a biopsy or a subtotal resection were more likely to have a tumor with pathological MRI-signal (by T2-weighted Fluid-Attenuated Inversion Recovery) crossing the midline (Hazard Ratio; HR = 1.30 [1.21–1.87], P < 0.001), and those receiving a biopsy sampling more often had multifocal lesions (HR = 1.30 [1.16–1.64], P < 0.001). For low-grade gliomas (N = 50), low observer confidence in the radiographic readings was associated with less chance of a total resection (P = 0.002) and correlated with the use of a more comprehensive adjuvant treatment protocol (Spearman = 0.48, P < 0.001). This study may serve as a guide to the treating physician by identifying the key radiologic determinants most likely to influence the treatment decision-making process
    corecore