4 research outputs found

    Origin of the Grande Ronde Formation flows, Columbia River flood basalt group

    Get PDF
    Lavas belonging to the Grande Ronde Formation (GRB) constitute about 63% of the Columbia River Basalt Group (CRBG), a flood basalt province in the NW United States. A puzzling feature is the lack of phenocrysts (\u3c 5%) in these chemically evolved lavas. Based mainly on this observation it has been hypothesized that GRB lavas were nearly primary melts generated by large-scale melting of eclogite. Another recent hypothesis holds that GRB magmas were extremely hydrous and rose rapidly from the mantle such that the dissolved water kept the magmas close to their liquidi. I present new textural and chemical evidence to show that GRB lavas were neither primary nor hydrous melts but were derived from other melts via efficient fractional crystallization and mixing in shallow intrusive systems. Texture and chemical features further suggest that the melt mixing process may have been exothermic, which forced variable melting of some of the existing phenocrysts. Finally, reported here are the results of efforts to simulate the higher pressure histories of GRB using COMAGMAT and MELTS softwares. The intent was to evaluate (1) whether such melts could be derived from primary melts formed by partial melting of a peridotite source as an alternative to the eclogite model, or if bulk melting of eclogite is required; and (2) at what pressure such primary melts could have been in equilibrium with the mantle. I carried out both forward and inverse modeling. The best fit forward model indicates that most primitive parent melts related to GRB could have been multiply saturated at ∼1.5--2.0 GPa. I interpret this result to indicate that the parental melts last equilibrated with a peridotitic mantle at 1.5--2.0 GPa and such partial melts rose to ∼0.2 GPa where they underwent efficient mixing and fractionation before erupting. These models suggest that the source rock was not eclogitic but a fertile spinel lherzolite, and that the melts had ∼0.5% water

    Cycles of ∼32.5 My and ∼26.2 My in correlated episodes of continental flood basalts (CFBs), hyper-thermal climate pulses, anoxic oceans, and mass extinctions over the last 260 My: Connections between geological and astronomical cycles

    No full text
    Potential temporal and causal connections among various geologic events have long been discussed in the geological literature. More recently, signs of common periodicities in these episodes have been reported. In this study of correlation and cyclicity of geologic occurrences, we review and synthesize previous work, and utilize the newest data for various major events over the the last 260 My. These include, 1) high-quality radio-isotopic age determinations (U-Pb zircon and 40Ar/39Ar) for continental flood-basalt (CFB) eruptions; 2) the dates of widespread intervals of ocean anoxia; 3) the latest published dates of marine and non-marine extinction events, 4) hyper-thermal climate intervals and 5) the occurrences of stratigraphic Hg anomalies, and non-radiogenic Os-isotope anomalies as potential proxies for large-scale basaltic volcanism. Times of at least 13 of 17 intervals of anoxic oceans are marked by stratigraphic Hg-anomalies, pointing to contemporaneous LIP eruptions, and 5 anoxic intervals in the warm Cretaceous Period are correlated with marine Os-isotope ratios suggesting potential LIP hydrothermal activity. Nine of the ocean-anoxic intervals are thus far correlated with times of marine-extinction episodes, and 8 of those anoxia/extinction co-events are significantly correlated with the ages of the well-dated CFB eruptions. Seven of the marine-extinction events and associated CFB volcanism are coeval with extinctions of non-marine vertebrates, supporting global catastrophic volcano-climatic episodes devastating both marine and terrestrial environments. New digital circular spectral analyses revealed significant underlying cycles of ∼32.5 My and ∼ 26.2 My in the ages of the anoxic events and marine extinctions. Spectral analysis of the latest high-quality ages of the CFBs resulted in similar significant periodicities of 32.8 My and 12.9 My (∼26.2/2 My harmonic). High-frequency periods at various harmonics appear at ∼6.4 My, 8.4 My and 9.7 My in each of the three spectra. These findings support a multi-factor extinction scenario in which release of massive amounts of CO2 and perhaps CH4 mostly from CFB magmas (and in some cases sub-volcanic intrusions into carbon-rich deposits), led to very warm climate intervals with near-lethal to lethal hyper-thermal conditions on land and in the sea. Concurrent release of halogens from CFB eruptions could also have decimated the global ozone layer. In many cases, the warm oceans became acidic, and developed anoxic to euxinic conditions, even up to the ocean surface, contributing to the causes of the marine extinctions. Additionally, four extinction events (late Eocene, end-Cretaceous, end-Jurassic and mid-Norian) correlate closely with the ages of the 4 largest impacts (craters ≥100 km in diameter) over the same period, capable of producing severe climatic effects and extinctions. The potential dominant underlying ∼33-My and 26-My cycles, reported in these and other correlated tectonic, climatic, and biotic events over the last 260 My and beyond, are likely related to the Earth's tectonic-volcanic rhythms, but the similarities with known Milankovitch Earth orbital periods and their amplitude modulations, and with known Galactic cycles, suggest that, contrary to conventional wisdom, the geological events and cycles may be paced by astronomical factors

    Petrological relationships among lavas, dikes, and gabbros from Integrated Ocean Drilling Program Hole 1256D: Insight into the magma plumbing system beneath the East Pacific Rise

    No full text
    A continuous section from extrusive lavas, through sheeted dikes, and uppermost gabbros recovered from Integrated Ocean Drilling Program Hole 1256D provides important information regarding magma plumbing systems beneath superfast spreading ridges. Petrological examination demonstrates that a model of fractional crystallization from a magma of composition similar to one of the more primitive gabbros in a shallow (?50–100 MPa) melt lens reasonably explains mineral and whole rock compositions of many lavas and dikes. Elevated concentrations of trace elements in some rocks appear to have resulted from mixing between primitive magma and highly evolved magma. About half of the dike samples have more evolved Fe-rich compositions than the extrusive lava samples. Magma densities of the Fe-rich dikes are a little higher (?30 kg/m3) than those of lavas, suggesting that these dike magmas would not reach the surface. Mineralogical investigations reveal that both lavas and dikes contain oscillatory zoned plagioclase xenocrysts, implying magma mixing caused by successive episodes of fractionation and magma replenishment in the melt lens. The plagioclase xenocrysts contain high-Anorthite sections [An: 100 × Ca/(Ca+Na) in mole percent] whose compositions are not in equilibrium with host liquids. The high-An sections were likely crystallized when primitive magmas with high CaO/Na2O were injected in the melt lens. Since the oscillatory zoned plagioclase generally forms crystal clots, they were probably accumulated in a mush zone. The petrographical examination favors a model suggesting that injection of primitive magma into the melt lens broke the mush zone and pushed out the oscillatory zoned plagioclase
    corecore