1,427 research outputs found

    How well-connected is the surface of the global ocean?

    Get PDF
    The Ekman dynamics of the ocean surface circulation is known to contain attracting regions such as the great oceanic gyres and the associated garbage patches. Less well-known are the extents of the basins of attractions of these regions and how strongly attracting they are. Understanding the shape and extent of the basins of attraction sheds light on the question of the strength of connectivity of different regions of the ocean, which helps in understanding the flow of buoyant material like plastic litter. Using short flow time trajectory data from a global ocean model, we create a Markov chain model of the surface ocean dynamics. The surface ocean is not a conservative dynamical system as water in the ocean follows three-dimensional pathways, with upwelling and downwelling in certain regions. Using our Markov chain model, we easily compute net surface upwelling and downwelling, and verify that it matches observed patterns of upwelling and downwelling in the real ocean. We analyze the Markov chain to determine multiple attracting regions. Finally, using an eigenvector approach, we (i) identify the five major ocean garbage patches, (ii) partition the ocean into basins of attraction for each of the garbage patches, and (iii) partition the ocean into regions that demonstrate transient dynamics modulo the attracting garbage patches

    Urban Freight transport in regulations and infrastructures in nine areas of Brittany

    Get PDF
    International audienceWith the increase of power of the local authorities, especially with regards to movement of urban goods, we decided to focus on the manner in which local authorities in the area of Brittany planned the implementation of regulations and infrastructure. This research studies nine towns in Brittany, namely: Rennes, Saint-Malo, Saint-Brieuc, Lannion, Morlaix, Brest, Quimper, Lorient and Vannes. It is based on urban documents, and interviews with local authorities, followed by diagnosis.Avec l'augmentation du pouvoir des collectivités locales, notamment dans le transport de marchandises, comment les collectivités locales élaborent-elles des réglementations ou des aménagements dans la région Bretagne ? 9 agglomérations bretonnes sont étudiées: Rennes, Saint- Malo, Saint-Brieuc, Lannion, Morlaix, Brest, Quimper, Lorient et Vannes. Cette recherche se base sur l'étude de documents d'urbanisme, des entretiens avec les élus locaux et des diagnostic

    The separation of the East Australian Current: A Lagrangian approach to potential vorticity and upstream control

    Get PDF
    The East Australian Current (EAC) is the western boundary current flowing along the east coast of Australia separating from the coast at approximately 34°S. After the separation two main pathways can be distinguished, the eastward flowing Tasman Front and the extension of the EAC flowing southward. The area south of the separation latitude is eddy-rich and the separation latitude of the EAC is variable. Little is known of the properties of the water masses that separate at the bifurcation of the EAC. This paper presents new insights from the Lagrangian perspective, where the water masses that veer east and those that continue south are tracked in an eddy-permitting numerical model. The transport along the two pathways is computed, and a 1:3 ratio between transport in the EAC extension and transport in the Tasman Front is found. The results show that the "fate" of the particles is to first order already determined by the particle distribution within the EAC current upstream of the separation latitude, where 85% of the particles following the EAC extension originate from below 460 m and 90% of the particles following the Tasman Front originate from the top 460 m depth at 28°S. The separation and pathways are controlled by the structure of the isopycnals in this region. Analysis of anomalies in potential vorticity show that in the region where the two water masses overlap, the fate of the water depends on the presence of anticyclonic eddies that push isopycnals down and therefore enable particles to travel further south

    Relating Agulhas leakage to the Agulhas Current retroflection location

    Get PDF
    The relation between the Agulhas Current retroflection location and the magnitude of Agulhas leakage, the transport of water from the Indian to the Atlantic Ocean, is investigated in a high-resolution numerical ocean model. Sudden eastward retreats of the Agulhas Current retroflection loop are linearly related to the shedding of Agulhas rings, where larger retreats generate larger rings. Using numerical Lagrangian floats a 37 year time series of the magnitude of Agulhas leakage in the model is constructed. The time series exhibits large amounts of variability, both on weekly and annual time scales. A linear relation is found between the magnitude of Agulhas leakage and the location of the Agulhas Current retroflection, both binned to three month averages. In the relation, a more westward location of the Agulhas Current retroflection corresponds to an increased transport from the Indian Ocean to the Atlantic Ocean. When this relation is used in a linear regression and applied to almost 20 years of altimetry data, it yields a best estimate of the mean magnitude of Agulhas leakage of 13.2 Sv. The early retroflection of 2000, when Agulhas leakage was probably halved, can be identified using the regression

    Wind Forced Variability in Eddy Formation, Eddy Shedding, and the Separation of the East Australian Current

    Get PDF
    The East Australian Current (EAC), like many other subtropical western boundary currents, is believed to be penetrating further poleward in recent decades. Previous observational and model studies have used steady state dynamics to relate changes in the westerly winds to changes in the separation behavior of the EAC. As yet, little work has been undertaken on the impact of forcing variability on the EAC and Tasman Sea circulation. Here using an eddy‐permitting regional ocean model, we present a suite of simulations forced by the same time‐mean fields, but with different atmospheric and remote ocean variability. These eddy‐permitting results demonstrate the nonlinear response of the EAC to variable, nonstationary inhomogeneous forcing. These simulations show an EAC with high intrinsic variability and stochastic eddy shedding. We show that wind stress variability on time scales shorter than 56 days leads to increases in eddy shedding rates and southward eddy propagation, producing an increased transport and southward reach of the mean EAC extension. We adopt an energetics framework that shows the EAC extension changes to be coincident with an increase in offshore, upstream eddy variance (via increased barotropic instability) and increase in subsurface mean kinetic energy along the length of the EAC. The response of EAC separation to regional variable wind stress has important implications for both past and future climate change studies

    Threat of plastic pollution to seabirds is global, pervasive, and increasing

    Get PDF
    Plastic pollution in the ocean is a global concern; concentrations reach 580,000 pieces per km(2) and production is increasing exponentially. Although a large number of empirical studies provide emerging evidence of impacts to wildlife, there has been little systematic assessment of risk. We performed a spatial risk analysis using predicted debris distributions and ranges for 186 seabird species to model debris exposure. We adjusted the model using published data on plastic ingestion by seabirds. Eighty of 135 (59%) species with studies reported in the literature between 1962 and 2012 had ingested plastic, and, within those studies, on average 29% of individuals had plastic in their gut. Standardizing the data for time and species, we estimate the ingestion rate would reach 90% of individuals if these studies were conducted today. Using these results from the literature, we tuned our risk model and were able to capture 71% of the variation in plastic ingestion based on a model including exposure, time, study method, and body size. We used this tuned model to predict risk across seabird species at the global scale. The highest area of expected impact occurs at the Southern Ocean boundary in the Tasman Sea between Australia and New Zealand, which contrasts with previous work identifying this area as having low anthropogenic pressures and concentrations of marine debris. We predict that plastics ingestion is increasing in seabirds, that it will reach 99% of all species by 2050, and that effective waste management can reduce this threat

    SOLUTIONS OF THE LANDAU-VLASOV EQUATION IN NUCLEAR PHYSICS

    Get PDF
    The properties of Vlasov equation solutions obtained by projection on coherent state basis are discussed. Such solutions satisfy stationarity conditions and satisfactorily describe the average diffusivity of nuclear phase space and reproduce the bulk properties of nuclei. Sampling methods and their effects on dynamics are discussed for the study of heavy ion reactions at intermediate energies. The non-local Gogny force is easily computable on this basis which allows to use it for dynamical nuclear studies

    Biogeographic patterns in ocean microbes emerge in a neutral agent-based model.

    No full text
    A key question in ecology and evolution is the relative role of natural selection and neutral evolution in producing biogeographic patterns. We quantify the role of neutral processes by simulating division, mutation, and death of 100,000 individual marine bacteria cells with full 1 million-base-pair genomes in a global surface ocean circulation model. The model is run for up to 100,000 years and output is analyzed using BLAST (Basic Local Alignment Search Tool) alignment and metagenomics fragment recruitment. Simulations show the production and maintenance of biogeographic patterns, characterized by distinct provinces subject to mixing and periodic takeovers by neighbors (coalescence), after which neutral evolution reestablishes the province and the patterns reorganize. The emergent patterns are substantial (e.g., down to 99.5% DNA identity between North and Central Pacific provinces) and suggest that microbes evolve faster than ocean currents can disperse them. This approach can also be used to explore environmental selection
    corecore