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The Ekman dynamics of the ocean surface circulation is known to contain attracting regions such as

the great oceanic gyres and the associated garbage patches. Less well-known are the extents of the

basins of attractions of these regions and how strongly attracting they are. Understanding the shape

and extent of the basins of attraction sheds light on the question of the strength of connectivity of

different regions of the ocean, which helps in understanding the flow of buoyant material like plastic

litter. Using short flow time trajectory data from a global ocean model, we create a Markov chain

model of the surface ocean dynamics. The surface ocean is not a conservative dynamical system as

water in the ocean follows three-dimensional pathways, with upwelling and downwelling in certain

regions. Using our Markov chain model, we easily compute net surface upwelling and downwelling,

and verify that it matches observed patterns of upwelling and downwelling in the real ocean. We

analyze the Markov chain to determine multiple attracting regions. Finally, using an eigenvector

approach, we (i) identify the five major ocean garbage patches, (ii) partition the ocean into basins of

attraction for each of the garbage patches, and (iii) partition the ocean into regions that demonstrate

transient dynamics modulo the attracting garbage patches. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4892530]

Ocean dynamics operate and affect climate on timescales

of months to millenia. In this paper, we investigate phe-

nomena on the ocean’s surface that manifest over very

long time periods: we look for regions in which water, bio-

mass, and pollutants become trapped “forever” (which we

refer to as attracting regions), or for long periods of time

before eventually exiting (which we refer to as almost-
invariant regions). While attracting regions may be quite

small in size or irregular in shape, they can nonetheless

exert great influence on the global ocean surface dynamics

if their basins of attraction are large.

I. INTRODUCTION

In this paper, we study how well water mixes between

different regions of the surface ocean. A better understanding

of the surface ocean’s mixing properties might help us study

the evolution of the so-called great ocean garbage
patches,1–4 which are regions in which plastics and other

floating debris accumulate after being carried there by winds

and currents.

Several recent papers have analyzed almost-invariant

regions in oceans,5–7 but less attention has been devoted to

analyzing attracting regions and their basins of attraction.

One study in this direction is Kazantsev,8,9 who identified

low-period orbits for a barotropic ocean model on a square.

In this paper, we take a probabilistic approach, which is

based on analyzing a spatial discretisation of the flow dy-

namics. We take a set of short-run trajectories from a global

ocean model and use these to construct a transition matrix,

thereby representing the dynamics as a Markov chain (see

Refs. 4–6); a related approach, which may be viewed as a

time-derivative of this construction, is discussed in Refs. 10

and 11. The transition matrix enables us to efficiently com-

pute the evolution of densities and to calculate surface

upwelling and downwelling. We are also able to make prob-

abilistic statements about the flow; in particular, we can

define the probability of eventual absorption into an attract-

ing region from any other region on the surface ocean.

We identify attracting regions of the surface ocean and

combine these results with an eigenvector approach to parti-

tion the ocean into regions that interact minimally with other

regions. The transfer operator methods developed in Ref. 12

reveal the locations of the ocean garbage patches. We further

adapt these methods to decompose the surface ocean into

almost-invariant sets in a forward-time and backward-time

sense. We are also able to interpret the backward-time parti-

tioning as a decomposition of the surface ocean into basins

of attraction of the major garbage patches.

Our modelling framework allows for the possibility that

particles of water may exit the ocean’s surface by washing

up on coastlines or being absorbed into the polar sea ice.

Dynamically speaking, we have an open dynamical system.

Open dynamical systems theory has been developed to han-

dle a wide variety of problems in which there is some proba-

bility of trajectories exiting the domain; we refer the reader

to the recent survey.13 Our approach also allows us to deter-

mine the probability that a particle in any given location will

eventually leave the computational domain.

An outline of this paper is as follows. In Sec. II, we

describe the data and a method to discretize the dynamics.

We use this method to calculate the forward evolution of tra-

jectories and surface up- and downwelling; these results are

contained in Sec. III. In Sec. IV, we define attracting sets,

basins of attraction, and absorption probabilities for the
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discretized dynamics. In Sec. V, we describe our main proce-

dure for analyzing connectivity, based on a transfer operator

method of constructing almost-invariant sets and basins of

attraction. Section VI concludes the article.

II. DATA DESCRIPTION, DEFINITIONS, AND METHOD

Let �X denote the entire surface of the ocean, considered

to be a compact two-dimensional manifold. Denote by �TðxÞ
the terminal point of a trajectory beginning at x 2 �X and inte-

grated forward over 48 weeks. While this period does not

resolve the entire annual cycle, it does resolve most of the

variability in the ocean flow. Furthermore, the mean-flow dy-

namics of interest here is relatively insensitive to variability

in the flow. This is apparent in the agreement between the

location and evolution of the garbage patches as presented

here (using 48 weeks of data), in time-mean analysis3 and in

analysis including a seasonal cycle.4

We use the (time-dependent) horizontal velocity vector

fields taken from the Ocean General Circulation Model for

the Earth Simulator (OFES model). OFES is a global high-

resolution ocean-only model14,15 configured on a 1/10� hori-

zontal resolution grid with 54 vertical levels and forced with

observed winds from the NCEP/NCAR reanalysis, with ve-

locity data available at three-day temporal resolution. Figure 1

shows the mean speed of the surface flow (in red) and the

mean direction of the surface flow (arrows). The means are

computed as an average over time at fixed spatial points and,

thus, represent Eulerian information as opposed to the semi-

Lagrangian analysis carried out in the rest of this paper.

Our computational domain X � �X consists of a two-

dimensional horizontal slice of the ocean at a depth of 5 m

over the region extending from 75�S to 75�N. Forward orbits

of X may permanently leave X via beaching or being frozen

into the Arctic or Antarctic, so X � �TðXÞ. We form

T :¼ �T jX : X! X, the restriction of �T to X, and refer to

ðX; TÞ as an open dynamical system, in contrast to the closed
dynamical system ð �X; �TÞ.

In order to study the ocean’s connectivity, we first form

a spatial discretization of the dynamics, using a method

known as Ulam’s method;16 see also Refs. 17 and 18. We

first grid the space X into boxes fBigN
i¼1. We use 2� � 2�

boxes; discarding boxes Bi 6�X leaves us with N¼ 10235

boxes. Let I :¼ f1;…;Ng, write XN :¼ fBi : i 2 Ig and

define the collection of all sets that are unions of boxes in XN

by BN. The proportion of mass in Bi mapped to Bj under one

application of T is equal to

Pij :¼
area Bi \ T�1 Bjð Þ

� �
area Bið Þ

; i; j 2 I ; (1)

where area is normalized over X. The transition matrix P
defines a Markov chain representation P of the dynamics,

with the entries Pij equal to the conditional transition proba-

bilities between boxes. In practice, the entries of P must be

numerically approximated using ocean trajectory data.

Within the OFES vector fields, virtual particles are advected

with a 4th-order Runge-Kutta method, using the connectivity

modeling system v1.119 and a time step of 1 h. Such a time

step is sufficient to accurately track the particles in 0:1� ve-

locity fields like OFES. Because T : X! X is an open dy-

namical system, the matrix P need not be stochastic, that is,PN
j¼1 Pij may be strictly smaller than 1 for one or more

i 2 I .

We initialize a set of 100 N particles on X at t¼ 1 Jan.

2001, with 100 particles placed on a 0:2� � 0:2� lattice

within each of the N 28� 28 grid boxes (there are fewer par-

ticles in boxes that contain some land mass). We numerically

estimate the entries of P by calculating

Pij ¼
#fx : x 2 Bi and T xð Þ 2 Bjg

#fx 2 Big
: (2)

In order to maintain a reasonably even sampling of points,

we reinitialize the uniform distribution of particles every

eight weeks to create six collections of consecutive eight-

week trajectories and six transition matrices Pð1Þ;Pð2Þ;
…;Pð6Þ, as in Ref. 4. We then form P ¼ Pð1Þ � Pð2Þ �… � Pð6Þ.
The reinitialization in each box every eight weeks merely

amounts to an eight-weekly uniform intra-box mixing and

does not affect the overall dynamics of the Markov chain

described by P.

Particles that exit X at any point during the eight-week

integration period are terminated. In total, we find that

0.5% of particles leave X over the 48-week period. Finally,

in order to ensure that P is not unduly influenced by the

number of seed particles per box, we recalculated P with 50

particles per box. The results presented in this paper were

essentially unchanged when recalculated with reduced

seeding.

FIG. 1. Map of mean speed (red) in

units of m/s and direction (arrows) of

the surface flow from the OFES model

over 48 weeks.
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III. FORWARD EVOLUTION OF TRAJECTORIES AND
SURFACE UP- AND DOWN-WELLING

We can use P to visualize the forward evolution of a

uniformly distributed set of points over the ocean’s surface.

Let a be a vector with entries ai ¼ areaðBiÞ; i 2 I , and cal-

culate aðkÞ :¼ aPk for k 2 f0; 1; 2;…g. Figure 2 depicts

fourth-root transformations of a(2), a(10), a(100), and a(1000),

and we can observe a divergence of mass from the Equator

and a convergence toward the centres of the subtropical

gyres. Comparable results were obtained using a similar

method in Refs. 3 and 4.

We can also calculate amounts of upwelling and

downwelling over 48 weeks by imposing the restriction that

the surface area of the ocean is preserved. Thus, if a
ð1Þ
i > ai,

then the difference a
ð1Þ
i � ai must have been pushed down

below the ocean’s surface (downwelled). Similarly, if

ai > a
ð1Þ
i , then the difference ai � a

ð1Þ
i must have emerged at

the surface (upwelled). Ekman theory20 linearly relates the

strength of the wind stress to the mass flux in the upper 10 to

100 m of the ocean. In our study, we assume that the thick-

ness of the Ekman layer was a constant 50 m over the entire

ocean. We, thus, think of the ocean surface area as a horizon-

tal layer of 50 m depth. To calculate upwelling in the stand-

ard units of metres per day, we compute

50 maxfai � a 1ð Þ
i ; 0g

7� 48ð Þai
; (3)

where the factor 7� 48 accounts for the number of days in

48 weeks. To calculate downwelling, we use a
ð1Þ
i � ai in

place of ai � a
ð1Þ
i .

In Figure 3(a), we observe a large amount of upwelling

occurring around the equator, the Western coastal regions of

North and South America, and the Western coastal regions

of Africa. Downwelling occurs in the North and South

Pacific, the Indian, and the North and South Atlantic oceans

(see Figure 3(b)), and is closely related to the regions where

the garbage patches are located.4 The numerical values of

both upwelling and downwelling are consistent with recent

studies; see Figure 2(b),21 for example.

IV. ATTRACTING SETS, BASINS OF ATTRACTION,
AND ABSORPTION PROBABILITIES

In this section, we define some of the objects that

we will use to analyze the connectivity of the surface

ocean: attracting sets, basins of attraction, and absorption

probabilities.

A. Dynamical systems and attracting sets

We will use a definition of attracting sets and basins of

attraction based on Milnor.22

Definition 1: Let Ac :¼ X =A. A set A for which

areaðA \ T�1ðAcÞÞ ¼ 0 is called forward invariant. A for-

ward invariant set A for which areaðAc \ T�1ðAÞÞ > 0 is

called attracting. The basin of attraction DA � X for an

attracting set A is defined as the set of points whose forward

orbits tend toward A.

DA :¼ fx 2 X : dðTkðxÞ;AÞ ! 0 as k!1g; (4)

where dðx;AÞ ¼ inffdistðx; yÞ : y 2 Ag.

FIG. 2. Maps of evolution of a uniform density under the action of P. Densities are subjected to a fourth-root transformation. The color axes represent a(k), the

horizontal and vertical axes represent the longitudinal and latitudinal coordinates, respectively.
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B. Markov chains and absorption probabilities

In Sec. II, we defined a Markov chain representation of

the dynamics, with the conditional transition probabilities

defined by (1). We will now use this representation to relate

attracting sets for dynamical systems to absorbing classes for

Markov chains.

Definition 2: We refer to the set of states Sk � I as an

absorbing closed communicating class if one has:

(i) For each pair i; j 2 Sk, there exists an m> 0 such that

Pm
ij > 0.

(ii) Pij¼ 0 for all i 2 Sk; j 62 Sk, and

(iii) Pij> 0 for at least one i 62 Sk; j 2 Sk.

Property (i) says that each class is communicating (there

is a positive probability of moving between any pairs of

states in the class in a finite number of steps); property (ii)

says that each class is closed (there is a zero probability of

moving out the class to another state elsewhere in our com-

putational domain X; we do not, however, restrict movement

from states in the class to states outside of X, and allow the

possibility that
P

jPij < 1 for i 2 Sk); property (iii) says that

each class is absorbing (there is a positive probability of

external states moving into the class in m steps). The nota-

tion Sk allows for the possibility that there are K absorbing

closed communicating classes, each identified by an index

number k 2 f1;…;Kg. We can connect Definitions 1 and 2

according to the following simple Lemma:

Lemma 1: If Sk is an absorbing closed communicat-

ing class for the Markov chain defined by P in (1), then

Ak :¼ [i2Sk
Bi is an attracting set for the open dynamical

system T : X! X.

Proof: See Appendix A.

Markov chain theory also allows us to compute the

probability, denoted hk,i, of eventually hitting an absorbing

closed communicating class Sk, conditioned on beginning in

state i 62 Sk. As each class Sk, k ¼ 1;…;K is closed, clearly

hk,i¼ 0 for i 2 [K
j¼1;j 6¼kSj, so we are only interested in hk,i for

i 62 [K
j¼1Sj.

The dynamical systems interpretation of hk,i is the pro-

portion of particles beginning in Bi 6�Ak that eventually hit

the attracting set Ak :¼ [j2Sk
Bj. A result adapted from Ref.

23 and used by Ref. 24 in a dynamical systems context

provides a method for exactly computing the vector of

absorption probabilities hk¼ (hk,i). We extend the method

of Ref. 24 in two ways: first, we allow for the possibility

that particles in the attracting sets may leak out of the do-

main, and second, we handle attracting sets consisting of

multiple states. We first define IS :¼ [kSk; IT :¼ I n I S,

and fP̂kgk2f1;…;Kg by

P̂k ¼
PkPk 0

Rk Qk

� �
; (5)

where Pk,ij¼Pij for i; j 2 Sk; Pk is a diagonal matrix of

size jSkj with Pk;ii ¼ 1=
P

j2Sk
Pij for i 2 Sk; Rk;ij ¼ Pij for

j 2 Sk; i 2 IT , and Qk,ij¼Pij for i; j 2 IT .

Theorem 1: The vector of absorption probabilities hk ¼
ðhk;iÞi2Sk[IT

into an absorbing closed communicating class Sk

is the minimal nonnegative solution to

P̂kg ¼ g; (6)

where g is a vector constrained to have gi¼ 1 for i 2 Sk.

Proof: See Appendix B.

The following algorithm summarizes the steps necessary

to define P and calculate the attracting sets.

Algorithm 1:

1. Partition the computational domain X into connected sets

fB1;B2;…;BNg.
2. Construct the transition matrix P corresponding to the

open system, following (2).

3. Determine the absorbing closed communicating classes of

P. The communicating classes may be easily and quickly

computed using, e.g., Tarjan’s algorithm.25

Applying Algorithm 1 to the global ocean’s surface in

the OFES model, we identify 10 absorbing closed communi-

cating classes (or sinks): 5 in the North Pacific regions, 1 in

the North Atlantic, 2 North of Alaska, 1 off the coast of

Peru, and 1 in the Southern Ocean. Each of these absorbing

classes is comprised of 1 or 2 boxes from which no trajecto-

ries leave and into which some trajectories enter from out-

side. Each sink lies adjacent to a coastline, and it is likely

that the precise locations and number of these sinks are arte-

facts of the OFES model and the box discretisation; we do

not place any physical significance on them and refer to

them as nonphysical absorbing classes. For this reason, we

do not report on the corresponding absorption probabilities,

although to compute the vectors hk by solving (6) is simple

to implement in, e.g., MATLAB using the backslash com-

mand. Nevertheless, for our eigenvector methods described

FIG. 3. Maps of average upwelling and downwelling rates. (a) Average rate of upwelling over 48 weeks (in m/day). (b) Average rate of downwelling over 48

weeks (in m/day).
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in Sec. V, it is important to know about these sinks as they

will appear as eigenvectors, which we will discard due to

their nonphysicality. It is interesting to note that none of the

garbage patches represent or contain sinks. As described in

Ref. 4, the garbage patches are “leaky attractors.”

V. EIGENVECTOR METHODS

In this section, we present our main approach for analy-

sing the global dynamics of the OFES model. Our strategy is

to compute eigenvectors of the matrix P corresponding to

real eigenvalues of P close to 1.

A. Left eigenvectors of P

To motivate our approach, let us first consider an ideal-

ised situation where the transition matrix P generated from

the OFES model contains M small nonphysical absorbing

classes and 5 garbage patches, each of which is also an

absorbing closed communicating classes, and further that the

basins of attraction are pairwise disjoint. In this idealised sit-

uation, we also assume that there is no loss of trajectories

through beaching or being frozen in ice, so the matrix P is

row-stochastic. In such a situation, the leading eigenvalue of

P is 1, this eigenvalue has multiplicity Mþ 5, and one may

find a basis of eigenvectors supported on the (disjoint) box

collections comprising the basins of attraction. The matrix P
has a block diagonal structure consisting of M diagonal unit-

sized blocks with entries 1, and 5 further larger blocks corre-

sponding to the 5 garbage patches.

Suppose now that we perturb P continuously; by classi-

cal matrix perturbation theory (Theorem II.5.1 of Ref. 26),

one knows that the Mþ 5 copies of the eigenvalue 1

will move continuously as a group, possibly becoming Mþ 5

distinct eigenvalues nearby 1. Further, under such a perturba-

tion, the span of the Mþ 5-dimensional eigenspace corre-

sponding to the eigenvalue 1 also moves continuously to a

nearby group of eigenspaces of the perturbed P of total

dimension Mþ 5. Arguing in this way, we expect the

(signed) supports of the top Mþ 5 eigenvectors of the per-

turbed P to reveal to us (through linear combinations) the

supports of the unperturbed P. Precursors of these ideas are

discussed27 in the simpler situation of a row-stochastic, re-

versible P, and methods are put forward28 to find approxi-

mately orthogonal bases in the same setting (see also Ref. 29

for related results).

The perturbation we have in mind here is the real OFES

model as opposed to the idealised model sketched above.

The real OFES model has a small loss of trajectories (due to

beaching and freezing), leading to a substochastic P. The

real OFES model does not have exactly disjoint basins of

attraction at the discrete grid level. Finally, the garbage

patches are not infinite-time absorbing classes, but very

long-term absorbing classes (many thousands of years).

Nevertheless, we show that this perturbation approach works

very well for the OFES model.

On the basis of the above argument, our hope is that the

span of the leading eigenvectors will reproduce a linear com-

bination of the 10 nonphysical absorbing classes, as well as

the garbage patches distributions in Figure 2(d), which

represent conditional transient behaviour that very slowly

enters one of the absorbing classes. For P constructed from

the OFES model, we have a complicated mix of eigenvalues

close to 1. Some eigenvalues correspond to eigenvectors

associated with absorption to absorbing classes comprised of

one or two boxes (with possible loss of trajectories, so that

the eigenvalue may be slightly less than 1) and some to

exchange between large collections of boxes corresponding

to garbage patches. The former are the nonphysical absorb-

ing classes, and we are primarily interested in the latter

larger collections. The leading eigenvalues of P are listed in

Table I.

In practice, we visualise the eigenvectors to determine

their supports. Figure 4 shows left eigenvectors of P close to

1, whose eigenvalues correspond to small exchange between

larger collections of boxes. The eigenvectors clearly high-

light five ocean garbage patches, present in the North and

South Pacific, Indian, and North and South Atlantic

Oceans,1–4 consistent with Figure 2(d). Dynamically, this

makes sense because there is likely to be only very little

exchange between the (attracting) garbage patches.

In this particular case study, the top four eigenvectors

and the eighth eigenvector (not shown) highlighted combina-

tions of boxes related to the (possibly leaky) nonphysical

absorbing classes. Further down the spectrum at positions 5,

6, 7, 9, the eigenvectors describe the slow-exchange dynam-

ics between the garbage patches (Figure 4). For the eigen-

vectors 5, 6, 7, 9, the eigenvalues quantify the geometric

rates at which the (signed) densities shown in Figure 4

converge to equilibrium. The eigenvectors themselves are

(scalar multiples of) signed densities, representing the slow-

decaying modes. Those eigenvectors with eigenvalues clos-

est to 1 are the most important, as they are the slowest to

decay and are the most long-lived transient modes. Some of

these eigenvectors highlight the patches along with some of

the nonphysical absorbing classes, for example, Figure 4(a)

shows a small highlighted region on the southwest coast of

South America, in addition to two garbage patches in the

South Pacific and South Atlantic.

TABLE I. Top 15 eigenvalues for P and P̂.

k P P̂

k1 1.0000 1.0000

k2 1.0000 1.0000

k3 1.0000 1.0000

k4 1.0000 1.0000

k5 0.9999 1.0000

k6 0.9999 0.9999

k7 0.9996 0.9999

k8 0.9991 0.9996

k9 0.9975 0.9991

k10 0.9913 0.9975

k11 0.9852 0.9913

k12 0.9838 0.9852

k13 0.9826 0.9838

k14 0.9680 0.9826

k15 0.9645 0.9680

033126-5 Froyland, Stuart, and van Sebille Chaos 24, 033126 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.94.166.178 On: Tue, 02 Sep 2014 22:25:53



B. Right eigenvectors of P

Let us now turn to the right eigenvectors of P. Clearly

we have the same complex mix of eigenvalues as discussed

above. Under left multiplication, the matrix P> is the matrix

representation of the dual dynamical action of P; see Lemma

5.30 Thus, the right eigenvectors v of P associated with real

eigenvalues k 6¼ 1 close to 1 have similar properties to the

left eigenvectors, with two important differences: they cap-

ture backward-time dynamics and rather than spanning a

space that looks approximately like the long-term mass dis-

tribution p (in the OFES model, this distribution is

concentrated in the nonphysical absorbing classes and in the

garbage patches) restricted to subregions, they span a space

that looks approximately like 1 restricted to subregions.

Moreover, by comparison with Theorem 1, one can

interpret the indicated regions as basins of attraction. Let us

consider again the idealised situation of Sec. V A: The tran-

sition matrix P has M nonphysical absorbing classes and 5

garbage patches, each of which is an absorbing closed com-

municating class, with pairwise disjoint basins of attraction.

Further, there is no loss of trajectories so that P is stochastic.

There will be Mþ 5 eigenvalues with eigenvalue 1. What do

the right eigenvectors look like? A particular basis is pro-

vided by Theorem 1. Consider k 2 f1;…;M þ 5g. Applying

Theorem 1 (note qk is a vector of 1 s), we see the entries of

the corresponding right eigenvector vk,i are

vk;i ¼
1; i 2 Sk;

hk;i; i is in the basin of attraction of Sk;

0; i is not in the basin of attraction of Sk:

8><
>: (7)

Since the Sk are pairwise disjoint and the basins are pairwise

disjoint, the vectors fvkgMþ5
k¼1 have disjoint support, with vk

supported only on Sk and its basin of attraction.

If we now perturb P to obtain the real P obtained from

the OFES model, again appealing to classical matrix pertur-

bation theory, we expect to obtain Mþ 5 eigenvalues nearby

1. Moreover, the level structure of the idealised vk indicated

in (7), which separates the different basins of attraction, will

persist in the (now signed) values of the vk. Thus, the level

structure of the right eigenvectors vk close to 1 should sepa-

rate the basins of attraction for distinct absorbing closed

communicating classes.

In Figure 5, we show four right eigenvectors of P, corre-

sponding to the four left eigenvectors in Figure 4. The sets

shown in deep red and light blue in the southern hemisphere

in Figure 5(a) correspond to the South Pacific and South

Atlantic garbage patches, respectively, in Figure 4(a). The

deep red region in Figure 5(b) corresponds to the North

Pacific garbage patch; the set shown in orange in the North

Atlantic in Figure 5(c) corresponds to the North Atlantic gar-

bage patch, and the deep red region in Figure 5(d) corre-

sponds to the Indian Ocean garbage patch; compare with

Figures 4(b)–4(d), respectively.

We can form an almost full partition of the surface

ocean by combining the information in Figure 5; see Figure 6.

For example, the North Pacific component in Figure 6 com-

prises boxes such that the value of vP,6 is above 0.005. We

can then calculate the condition transition probabilities

between the regions identified in the partition in Figure 6,

over a 48-week duration in time. Table II shows the result of

this calculation, with I is the Indian, NP is the North Pacific,

SP is the South Pacific, NA is the North Atlantic, SA is

the South Atlantic, and R is the remainder (unassigned or the

extreme north and south). The inter-region percentages along

the diagonal of the array are all near 100%, which is consist-

ent with the interpretation of the regions as basins of attrac-

tion of a garbage patch. The main losses (above 2%) are

from the North Pacific to the South Pacific (3.1%) and from

FIG. 4. Maps of selected left eigenvectors of P showing the locations of the

five great ocean garbage patches.
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the South Atlantic to the Indian (6.56%). Note that Table II

is non-symmetric, which is consistent with the lack of time-

symmetry of the surface ocean dynamics.

Note that the flow direction indicated by the sweep of

the sets indicated in Figure 5 is consistent with a backward-
time ocean flow. This is as expected, since right eigenvectors

of P correspond to backward-time dynamics. Interestingly,

these basins of attraction do not completely overlap with the

geographical notion of the different ocean basins. In particu-

lar, in the Southern Hemisphere, the attracting regions “spill

over” westward: the South Atlantic region in Figure 5(d)

extends through Drake Passage and well into the Pacific sec-

tor of the Southern Ocean. The strong Antarctic Circumpolar

Current (ACC) apparently skews the water mass distribu-

tions in the Southern Ocean. The equatorial region is also

interesting from an oceanographic point of view. The north-

ern hemisphere attracting regions extend further south in the

Atlantic than in the Pacific (Figure 5(a)). This is very likely

due to the presence of the North Brazil Current,31 which

breaks the hemispheric symmetry in the Atlantic Ocean and

has no counterpart in the tropical Pacific Ocean.

C. Left eigenvectors of P̂ : OFES model

Finally, we wish to create a forward-time partition of

the ocean surface “analogous” to the backward-time partition

shown in Figure 6. By “analogous,” we mean that we would

like to have a complete partition of the ocean that takes the

focus away from the dominant attracting regions (the sinks

and the garbage patches), which were so readily highlighted

by the left eigenvectors of P.

There are two equivalent ways of doing this. First,

we can take a left eigenvector uP,k, k¼ 5, 6, 7, 8 of P and

divide element-wise by a(1000) to produce ðvP̂;kÞi ¼ ðuP;kÞi=
ðað1000ÞÞi; the notation for vP̂;k will become clear shortly.

Recall that a(1000) is the pushforward of a uniform measure

on the ocean over 1000 cycles (depicted in the final panel of

Figure 2). The vectors vP̂;k describe forward-time transient

behaviour, “modulo” the sinks and garbage patches as they

appear from the 1000-year evolution because the values of

uP,k are proportionally diminished around these features.

Second, we can form a matrix that is akin to a time-

reversal of the transition matrix P. The standard way to do

this is to use the invariant measure p (see, e.g., Ref. 32 and

in the dynamical systems setting33). The problem with the

OFES model is that there is not a single p, but at least 12

(conditional) invariant densities, corresponding to the dis-

tinct nonphysical absorbing classes. Rather than consider the

TABLE II. Forward-time conditional transition percentages between the

five surface ocean regions (from row to column) shown in Figure 6, associ-

ated to domains of attraction for each of the five major garbage patches.

I NP SP NA SA R

I 95.43 0.56 1.39 0 1.92 0.54

NP 1.50 94.89 3.10 0 0 0.42

SP 1.31 1.10 95.83 0 0.46 1.25

NA 0 0 0 97.14 0.98 1.44

SA 6.56 0 0.34 0.03 91.62 1.44

FIG. 5. Maps of right eigenvectors fvP;rg of P.

FIG. 6. Map of a partition of the surface ocean into domains of attraction

associated to each of the five major garbage patches, based on backward

time evolution.
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(multiple) infinite futures of surface particles, we again use

the 1000-year future, namely, g :¼ að1000Þ as a proxy for p.

The matrix P̂ij :¼ gjPji=gi represents an approximate

backward-time dynamics under left multiplication. The vec-

tor g represents an approximate invariant measure of the

dynamics of P̂, since
P

igiP̂ij ¼ gj

P
iPji, and

P
iPji is

approximately a vector of 1 s (it is not exactly 1 because of

the tracer leakage).

We now compute the right eigenvectors vP̂ of P̂ij, which

contain information about the almost-invariant regions for

the flow in forward-time, and importantly span a space that

looks approximately like 1 restricted to subregions. The fol-

lowing computation shows that these two methods of con-

structing vP̂ coincide. Using the second characterisation, let

vP̂ be a right eigenvector of P̂ with eigenvalue k. Then

k vP̂ð Þi ¼
Xn

j¼1

P̂ij vP̂ð Þj ¼
Xn

j¼1

gjPji

gi

vP̂ð Þj:

Thus, k½giðvP̂Þi� ¼
Pn

j¼1½gjðvP̂Þj�Pji, so g 	 vP̂ is a left eigen-

vector uP of P with eigenvalue k, where * denotes compo-

nentwise multiplication; rearranging, ðvP̂Þi ¼ ðuPÞi=gi as in

our first construction. The eigenvalues corresponding to P̂

are given in Table I. The eigenvalues of P and P̂ are very

close as expected, since P̂ is a similarity transformation of P.

In Figure 7, we present the four right eigenvectors of P̂
that correspond to the four eigenvectors shown in Figures 4

and 5. In Figure 7(a), one can identify a yellow patch extend-

ing outwards from South America to the east, and a deep red

triangular patch extending west, corresponding to the South

Atlantic and South Pacific garbage patches. In Figure 7(b),

several colored regions are shown, each corresponding to a

distinct garbage patch. In Figures 7(c) and 7(d), one sees the

deep red region in the North Atlantic and the deep red region

extending out from the Indian Ocean to the east, past south-

ern Australia and South America.

As in Sec. V B, we can combine the information in the

eigenvectors to form an approximate partition of the surface

ocean, shown in Figure 8. Because this partition is con-

structed from forward-time eigenvectors, it can be thought of

as a partition into the medium to long-term forward-time

transient structure of the ocean, modulo the absorbing fea-

tures of sinks and gyres.

Table III shows the conditional transition probabilities

over a 48 week duration between the five ocean domains in

Figure 8.The values on the diagonal of this table are not as

large as those in Table II because we are not carrying out the

division by a(1000) and the numbers are based on a single an-

nual cycle, rather than hundreds of cycles.

Figure 7 shows some interesting features of inter-ocean

connections. The main structures visible in Figure 7(b) are in

the southeast Pacific, in an area (yellow) roughly overlapping

with the cold tongue there34 but also including a bit of the

South Atlantic around Drake Passage. There is a structure in

Figure 7(d) (dark blue) in the South Atlantic, that interest-

ingly, excludes the Benguela upwelling,35 which, according

to Figure 7(d), is more connected to a large structure (red)

encompassing all of the Indian Ocean, the southwestern part

FIG. 7. Maps of right eigenvectors fvP̂ ;rg of P̂.

FIG. 8. Map of a partition of the surface ocean based on forward-time

evolution.
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of the Pacific and nearly all of the Southern Ocean. In the

tropics, the Indonesian through flow (the phenomenon by

which water from the Pacific flows into the Indian Ocean via

the Indonesian Archipelago36) is also visible in both Figures

7(b) (red) and 7(d) (light blue).

VI. CONCLUSION

Ulam’s method, now a staple tool in many dynamical

systems applications, enables one to use Markov chain ideas

to analyse dynamical systems. Employing this method, we

built a Markov representation of the dynamics of the global

surface ocean. We were then able to compute the evolution

of densities over many centuries, calculate surface upwelling

and downwelling, and identify attracting regions using

strongly connected components, exploiting a connection

between attracting sets for dynamical systems and absorbing

closed communicating classes of Markov chains. Finally, we

were able to interpret the left and right eigenvectors of the

Markov chain transition matrix as almost-invariant sets and

basins of attraction, respectively. We used these eigenvector

techniques as a powerful method of identifying garbage

patch locations and mapping their basins of attraction. We

thus dynamically decomposed the global ocean surface into

weakly interacting parts in both forward and backward time.

Decompositions such as these one can form the basis of a

dynamical geography of the ocean surface, where the bounda-

ries between basins are determined from the circulation itself,

rather than from arbitrary geographical demarkations. One of

the results that comes out of this decomposition, for instance,

is that the Atlantic and Pacific Oceans are split into Northern

and Southern parts at roughly the Equator, but that the Indian

Ocean is one entity from 30�S to 30�N. Maps of these kinds of

features in the ocean’s dynamical geography allow us to better

understand how the different ocean basins are connected.
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APPENDIX A: PROOF OF LEMMA 1

Only properties (ii) and (iii) of Definition 1 are required.

Suppose Sk is an absorbing closed communicating class for

the Markov chain with conditional transition probabilities

given by (1). Then, Pij¼ 0 for i 2 Sk; j 62 Sk, which implies

that areaðA \ T�1AjÞ ¼ 0 for all j 62 Sk, so A is a forward

invariant set. Also, Pij> 0 for j 2 Sk and at least one i 62 Sk,

which implies that areaðAi \ T�1ðAÞÞ > 0 for at least one

i 62 Sk, so A is an attracting set according to Definition 1.

APPENDIX B: PROOF OF THEOREM 1

The proof is an expanded version of the proof of

Theorem 1.3.2;23 we present the proof here for completeness

to demonstrate the application to the substochastic setting.

Let ðZtÞt2N be the substochastic Markov process over

state space I , with conditional transition probabilities

PfZtþ1 ¼ jjZt ¼ ig ¼ Pij for i; j 2 I .

First, note that if i 2 Sk, then hk;i ¼ PfZtþ0 2 Skj
Zt 2 Skg ¼ 1. Next, we examine the case i 2 IT . We have

hk;i :¼ PfZtþr 2 Sk; some r 
 1jZt ¼ ig;
¼ PfZtþr 2 Sk; some r 
 2; Ztþ1 2 IT ; Zt ¼ ig=pi

þPfZtþ1 2 SkjZt ¼ ig;
¼
X
j2IT

PfZtþr 2 Sk; some r 
 2; Ztþ1 ¼ j; Zt ¼ ig=pi

þ
X
j2Sk

Pij;

¼
X
j2IT

PfZtþr 2 Sk; some r 
 2jZtþ1 ¼ jg

�PfZtþ1 ¼ j; Zt ¼ ig=pi þ
X
j2Sk

Pij;

¼
X
j2IT

PfZtþr 2 Sk; some r 
 1jZt ¼ jg � Pij þ
X
j2Sk

Pij;

¼
X
j2IT

hk;j � Pij þ
X
j2Sk

Pij:

Therefore, for i 2 IT , we have shown that hk;i; i 2 IT is

a solution to the problem

X
j2IT[Sk

Pijgj ¼ gi subject to gj ¼ 1 for j 2 Sk: (B1)

Now, we show that hk;i; i 2 IT is the minimal solution

to (B1). Suppose that f is another solution; then, fi¼ 1 for

i 2 Sk, and for i 2 IT , we have

fi ¼
X

j2IT[Sk

Pijfj ¼
X
j2Sk

Pij þ
X
j2IT

Pijfj: (B2)

Substituting fj ¼
P

l2IT[Sk
Pjlfl in the final term,

fi ¼
X
j2Sk

Pij þ
X
j2IT

Pij

nX
l2Sk

Pjl þ
X
l2IT

Pjlfl

o

¼
X
j2Sk

Pij þ
X

j2IT ;l2Sk

PijPjl þ
X

j;l2IT

PijPjlfl

¼ PfZtþ1 2 SkjZt ¼ ig þPfZtþ2 2 SkjZt ¼ i; Ztþ1 2 ITg
þ
X

j;l2IT

PijPjlfl: (B3)

After repeating the substitution for f in the final term n times,

we obtain

TABLE III. Forward-time conditional transition percentages between the

five surface ocean regions (from row to column) shown in Figure 8.

I NP SP NA SA R

I 90.12 0.51 3.94 0 3.67 0.71

NP 3.78 92.68 2.78 0.09 0.01 0.32

SP 3.50 1.23 86.36 0 8.51 0.39

NA 0 0.03 0 99.00 0.51 0.02

SA 13.05 0 0 8.66 77.82 0.34
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fi ¼ PfZtþ1 2 SkjZt ¼ ig þ � � �
þPfZtþn 2 SkjZt ¼ i; Ztþ1;…Ztþn�1 2 ITg
þ

X
j1;…;jn2IT

Pij1
Pj1j2 …Pjn�1jn fjn : (B4)

If f 
 0, then the last term on the right is nonnegative, and the

remaining terms sum to PfZtþr 2 Sk some 0 � r � nj Zt ¼ ig
(the probability of hitting Sk within n steps). So

fi 
 lim
n!1

PfZtþr 2 Sk some 0 � r � nj Zt ¼ ig

¼ PfZtþr 2 Sk some r 
 0j Zt ¼ ig ¼ hk;i:
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