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RBsume: Nous discutons les propribtks des solutions de J'Bquation de Vlasov ohtenues 
par  projection sur  une  base d'Btats cohbrents. Elles verif ient  des conditions de 
stationnarite e t  permettent de dBcrire l a  diffusivit6 moyenne de l'espace de phase 
nuclbaire e t  de reproduire les caractbristiques moyennes des noyaux Les methodes 
d'bchantillonnage e t  leurs effets s u r  la  dynamique sont discutBs pour l'etude des reactions 
nucleaires aux Bnergies intermbdiaires. Enfin, I'utilisation de la force non locale de Gogny 
est directe ce qui  donne I'opportunitB de l'utiliser e n  dynamique nucl6ait-e 

Abstract: The properties of Vlasov equation solutions obtained by projection on  
coherent state basis a r e  discussed. Such solutions satisfy stationarity conditions and 
satisfactorily describe the  average diffusivity of nuclear phase space and reproduce the 
bulk properties of nuclei. Sampling methods and their  effects on dynamics are  discussed 
for  the study of heavy ion reactions a t  intermediate energies. The non-local Gogny force 
is  easily computable on th is  basis which allows to use i t  for  dynamical nuclear studies 

I - INTRODUCTION. 

The new experimental data obtained i n  the intermediate energy range  (10 

to 100 A-MeV) have brought forward the  Vlasov equation (and its associates the 

Landau-Vlasov.(ll o r  V.U.U. equation (2)) i n  the field of nuclear studies. It gives the time 

evolution of the nucleus one-body phase space under the  influence of the nuclear  

mean-field : 

a f 
D f  = - +  [ f , H ]  = 0 

t (1.1) at 
--++ 

f = f (  r ,  p ; t) is  the one-body density distribution ; the  Poisson brackets ( ) are  defined as 
usual from the  Hamiltonian H( 

We shall not  discuss he re  the  virtues and drawbacks of such an equation 

which constitute a lively subject of discussion between theoreticians. We shall take i t  as i t  

is : a semi-classical approximation to more sophisticated self-consistent quantum evolution 
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equations ; i n  particular i t  can be found as the h + 0 limit of TDHF equation ( 3  1. Then f ( 7  
a is a smoothed, positive approximation to the exact Wigner-transform of the one body 

nuclear density matrix. 

The appealing features of Vlasov equation i n  nuclear physics a re  threefold 
-4 -+ 

i )  since i t  i s  positive, f (  r, p ; t )  can be interpreted as a probability distribution of a n  

assembly of (fictious) pseudo-particles : i i )  its semi-classical character provides easier 

interpretations of its properties ; i i i )  i t  can be coupled to a collision term to take into 

account the  residual interaction. One of the  unpleasant features of the  Vlasov equation lies 

in  the fact  t.hat i t  is not  easier to solve than the TDHF equation from which i t  can be 

derived. However, the Vlasov equation turns  out to be a - still unchallenged - method to 

studying the interplay between one - and two-body interactions i n  heavy-ion collisions. 

In this paper, we shall discuss two questions which a r e  connected with the 

use of Vlasov equation i n  nuclear physics i) how can we define its initial conditions ii) 
what a re  the  methods to solve i t  taking advantage of its considerable redundancy. The first 

point is  of major importance a t  lower energies since the close-to-equilibrium properties 

cannot be safely studied unless one is able to provide descriptions of nuclear ground states 

which are  stationary solutions of Vlasov equation. The second one is essential to the 

possibility of making simulations of rea l  nuclear reactions. 

The next  section presents the basis that  we use ; the third section gives some 

results for  nuclear statics. Dynamics of nuclear reactions is discussed in  section 4.  

I1 - STATIC BASIS OF THE PHASE SPACE. 

The coherent  states a r e  gaussian wave packets labelled by a continuous 

complex parameter IZ>, connected with the position of their  center (x0, po) , we firstly 

discuss he re  the one-dimension case since the extension of the formalism to three 

dimensions is  straightforward. The coherent  state properties a re  well known (see ref  4 

for  a review). Let us  briefly recall tha t  i) according to the  metric dp(Z) = dxodp0/h, 
they obey the  closure relationship : Jdp(2) Z > 21 = 1 (2.1) 

i i )  they form a n  overcomplete basis of the  Hilbert space ; i.e one can develop any  density 

operator as b =  sdk(Z) ~ F ( z ' )  p Z , * l ~ >  <z'I (2.2) 
which determines a mapping of the quantum phase space onto the space spanned by the 

continuous parameters z. 
The coherent  states a r e  quantum objects, particularly well fitted to the 

semi-classical approximations. The Wigner transform of < > is : 

X -  X ,  p -  PO ; A A A e x  (2.3 

Although they  originates from minimum uncertainty wave packets (ApAx 
= h/2) ; one can use reduced coherent  states (i.e. h -+ 0) while preserving the above 

2.1 and 2.2. I n  this case, they cannot be interpreted as wave packets of real 

particles but as basis elements of the phase space ( they a r e  often called "quasi particles" 1 



which cannot be interpreted independently each from others. Notice that  we recover the 

"classical quasi particles" 6(x - xo, p - p,) if YI = 0 .  
The projection of a given phase space distribution then  reads : 

~ ( x , P )  = W(X,P) * ~ ( x , P  ; AX, AP) ; (2 .4 )  
it is a folding product of the  coherent states basis on a weight function w(x.pl 

f(x,p) = (4nhAxhp)-' Jdxodp0 w ( x ~ ,  P O )  ~ ( x - x , ,  p- PO ; hx, hp)  (2.5) 

I n  principle, one could deduce such expressions from PZZ i n  eq .  2.2. 
However, i n  this case the resulting f(x,p) is not fitted to our goals since i t  keeps track of all 

quantum effects (such as shell effects) and presents wide oscillations. The general method 

to deduce a smooth approximation f(x,p) from eq. 2.4 is  still to be performed. We have used 

a ve ry  simple ansatt  (1 )  guided by the  Thomas-Fermi limit that  we must recover a t  the 

h + 0 limit and by quantitation methods of semi classical orbits i 5 ) .  

f (x ,p)  = @(EF - X ( X ,  P))* d(x,p, ; Ax, Apj (2.6) 
The symbole R indicates tha t  one takes the  expectation value of the classical harniltonian 

on the  coherent  state, which  is  imposed by energy-conservation conditions i n  dynamical 

equations (see below). Eq. 2.6 extends the  existence domain of f(x,p) beyond the classical 

allowed region-while not  inducing any  coupling to the continuum. As In most smoothing 

procedures, we are  leftwith the choice of t he  couple (a, Ap! which is fixed by requiring 
that  the average diffusivity of the real phase space is reproduced. We notice that  i n  eq .  2.5 ,  
the step function plays the role of a n  occupation number for  a continuous set of 

semi-classical trajectories. I n  fig. 1, one can see the  comparison between eq.  2.6 for  

fermions i n  a harmonic field and exact o r  smoothed quantum results. 

Fig.1 : Phase density distributions i n  ( ~ n l f i ) ~  units for  224 fermions i n  a harmonic well 
The exact (dashed curve) and smoothed (dashed and dotted curve) solutions a r e  
from ref.10. Our result is  given by the full line. 

111 - STATIC DESCRIPTION OF NUCLEI. 
The phase space distribution of a cold nucleus is given by a direct extension 

of s q .  2.6 : 
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+ ---+ 
~ ( T ~ = B ( E ~ - R ( ~ $ ) )  * d (  r , p ; Ar, Ap) (3.1) 

4 4 

where we assume isotropy in  the r and in the p directions. The Fermi energy EF is 

self-consistently deduced by constraining the norm of fc?) to the number of nucleons 

Till now, calculations have been performed with simple Skyrme effective interactions : 

~ ( p m )  - a p m  + b p V + ' 6 !  O < v <  l (3.2) 
which are  easily combined with eq. 3.1, since the spatial density p m  is : 

p m  = Sf(T3dp = f T F m  dCi;); Ar) 13.3) 
i.e. the Thomas-Fermi density (taking into account the zero-point energy)  folded with a 

gaussian. 

However, the structure of eq. 3.1 is particularly well fitted to the use of the 

Gogny effective interaction (6) which is non-local and allows good descriptions of ground 

state as well as fissionning nuclei. In the phase space notation, the one particle potenlial 

reads for N=Z nuclei (7) : 

2 

+ z Si f ( Z  S, * dtSi d + h / p i )  ( 3 . 4 )  
i -  I 

The widths pi and depths di, are  deduced from the D1 pararuetrization of the Gogny 

force. Since folding products between gaussians are straightforward 
1 12 

g(=, Q'") r p(x, p = g(x, ( a ~ ) ' ' ~ )  ( 3 - 5 )  

the Gogny force turns out to be handy 

for semi-classical static and dynamic 

nuclear study ; i t  provides a n  

effective way of studying the effects 

of non-locality and/or velocity 

dependence on observables i n  

heavy-ion reactms. In  fig. 2, we show 

the nuclear profile obtained for a 
4 0 ~ a  nucleus. 

H.F. ( s k m *  ) 

- ---  
F V l a  s o v  (Gogny-GZ) 

40 Ca 

Fig.2 : Density profiles for protons, neutrons in a "ca 
nucleus. We compare the results of Hartree-Fock with a 
Skyrme interaction and our calcutation with a G O B ~ Y  
interaction. 



IV - NUCLEAR DYNAMICS. 
The main objective of the above considerations on nuclear  statics is to get 

good initial conditions of the  Vlasov (or  V.U.U.) equation. If any  functional of energy is 

solution of the static (time independent) Vlasov equation, one has  to demonstrate that  i t  is 

stationary before using i t  i n  dynamical calculations, i.e. that  all the  observables a re  

time-independent a t  least on a time-scale lager than the average duration of the nuclear 

reaction. 

Solutions of eq.  (1.1) having the  form of eq .  (3.1) a r e  given provided that 

i) R i s  a constant of motion and ii) the coherent states are solutions of the Vlasov 

equation. The first condition : 

d ,, --T(r, p) = 0 (4.1 
d t  

is  exactly fulfilled if t he  gaussian centers follow the Ehrenfest equations : 

d F  

The second condition is fulfilled i n  the  sense that eqs ( 4  2) insure t he  minimal value of 

the action associated with the coherent state propagation in  general  potential Our 

semi-classical approximation then  amounts to project the  exact phase space on the class of 

solutions given by a swarm of coherent  states moving i n  a n  effective field X. The 

stationarity is  guaranteed since only the  lower energy orbits a r e  fully occupied These 

properties have been checked with a ve ry  h igh  degree of accuracy absolute fluctuations 

of less than  1 % of the total e n e r g y ,  the rms radius and quadrupole moments which a r e  the 

low energy modes immediately excited by small deviations from the  ground state 

However, t he  phase space occupied by a nucleus is ve ry  large when 

compared to the actual extension of a coherent  states, the  ratio scales roughly as 

r = (R/Ar13 (pp/hp13 ( 4 . 3 )  
where R and p~ are respectively the radius and the Fermi momentum of the nucleus For 

nuclei with A >> 1. T is of the order of one thousand per  nucleon ( in  ou r  calculations. 
typical values for  Ar and Ap are respectively 0 6 fermi and 0.15 fermi- l )  Real 

calculations can be performed in  two cases i) when symmetries reduce the  d~mensionality 

of the problem, one can track the whole phase space (see ref  8 for  spherical symmetries) 

ii) For real  3-D problems, one has  to reduce the  complexity by a Monte-Carlo sampling of 
the step function i n  e q  3.1 . 

N 

f(<a W. d ( 7 -  7 ; 5 - 5. ; Ar, AP) 
i - 1  
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The number N is evidently a critical parameter, numerical tests show that 

complete stability is  obtained as soon as N 3 50 A which is still large but much less 

than eq  i4.3) would let  expect. 

We shall not show here  the 

variety of results that  one can extract from 

such calculations which go from the 

collective mode excitation of cold or  heated 

nuclei ( 8 )  to the intermediate energy 

reaction mechanism (9). These results show 

the ability of the formalism to follow the time 

evolution as well of relatively low energy 

modes as of reactions where  considerable 

energy and momentum transfers  occur. 

I n  fig. 3, we show calculations 

for  the l 2  C + 12c reaction a t  84' A MeV with 

the Gogny interaction ; i t  is compared with 

calculations made with a simple local Skyrme 

interaction. I n  this central collision, the bulk 

behavior looks similar, but we must remark 

that  the f inal  relative velocities a re  different, 

this effect can be tracked back to the 

potential energy evolution which exhibits 

strong variations a t  t h e  beginning of the 

reaction due to the  non-local character of the 

interaction. This prel iminary result shows 

the  open field of research tha t  one can expect 

from the Landau-Vlasov equation used with 

such sophisticated interactions") 

TDHF VLASOV, VLASOV2 

r"' 

Fig.3 : Projected nuclear densities on the reaction plane Ior the "C + "C (b4)A MeV) 
reaction the impact parameter is  2.5 fm. The results labelled as TDHF and l VLASOVl are 

found with a SKYRME force, VLASOV* gives the resuets with the GOGNY interaction. 

V - CONCLUSIONS. 
We have discussed a sheme to solve the Vlasov (Landau-Vlasov and V.U.U) 

equations i n  the context of nuclear  physics. We have shown that  gaussian (coherent)  

states a r e  particularly well-fitted moving bases onto which one can project t he  dynamic 

solutions. The finite-site character of the gaussians are essential to the correct description 



of the  bulk static propert ies  of nuclei  and  t h e n  to the  study of low-energy collective modes 

of nuclei .  Taking use of t h e  gaussian f o r m  factors  of t h e  non-local Gogny interact ion,  we 

have  shown t h a t  it can  be used i n  dynamical studies , th i s  interact ion h a s  been v e r y  

successful i n  the  study of static nuc lear  properties and of fission modes, our  formalism 

provides a un,ique way of using i t  i n  t h e  study of collective mode excitations and  reaction 

mechanisms. 

The authors  t h a n k  M. PI, Y. RAFFRAY, P. SCHUCE a n d  E. SCIRAUD f o r  the i r  

collaborations. 
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