89 research outputs found

    Determinants of Arbovirus Vertical Transmission in Mosquitoes.

    Get PDF
    International audienceVertical transmission (VT) and horizontal transmission (HT) of pathogens refer to parental and non-parental chains of host-to-host transmission. Combining HT with VT enlarges considerably the range of ecological conditions in which a pathogen can persist, but the factors governing the relative frequency of each transmission mode are poorly understood for pathogens with mixed-mode transmission. Elucidating these factors is particularly important for understanding the epidemiology of arthropod-borne viruses (arboviruses) of public health significance. Arboviruses are primarily maintained by HT between arthropod vectors and vertebrate hosts in nature, but are occasionally transmitted vertically in the vector population from an infected female to her offspring, which is a proposed maintenance mechanism during adverse conditions for HT. Here, we review over a century of published primary literature on natural and experimental VT, which we previously assembled into large databases, to identify biological factors associated with the efficiency of arbovirus VT in mosquito vectors. Using a robust statistical framework, we highlight a suite of environmental, taxonomic, and physiological predictors of arbovirus VT. These novel insights contribute to refine our understanding of strategies employed by arboviruses to persist in the environment and cause substantial public health concern. They also provide hypotheses on the biological processes underlying the relative VT frequency for pathogens with mixed-mode transmission that can be tested empirically

    Excretion of dengue virus RNA by Aedes aegypti allows non-destructive monitoring of viral dissemination in individual mosquitoes

    Get PDF
    International audienceSuccessful transmission of a vector-borne pathogen relies on a complex life cycle in the arthropod vector that requires initial infection of the digestive tract followed by systemic viral dissemination. The time interval between acquisition and subsequent transmission of the pathogen, called the extrinsic incubation period, is one of the most influential parameters of vector-borne pathogen transmission. However, the dynamic nature of this process is often ignored because vector competence assays are sacrificial and rely on end-point measurements. Here, we report that individual Aedes aegypti mosquitoes release large amounts of dengue virus (DENV) RNA in their excreta that can be non-sacrificially detected over time following oral virus exposure. Further, we demonstrate that detection of DENV RNA in excreta from individual mosquitoes is correlated to systemic viral dissemination with high specificity (0.9–1) albeit moderate sensitivity (0.64–0.89). Finally, we illustrate the potential of our finding to detect biological differences in the dynamics of DENV dissemination in a proof-of-concept experiment. Individual measurements of the time required for systemic viral dissemination, a prerequisite for transmission, will be valuable to monitor the dynamics of DENV vector competence, to carry out quantitative genetics studies, and to evaluate the risk of DENV transmission in field settings. Vector competence is the intrinsic ability of arthropods to acquire and subsequently transmit vector-borne pathogens , such as, malaria parasites or dengue viruses (DENV) 1. Experimental vector competence assessments of arthropod populations are an important component of assessing the risk of vector-borne disease. Vector competence is a quantitative trait that varies not only between arthropod species, but also within a vector species. For example, 24 populations of the mosquito Aedes aegypti sampled throughout Mexico and the United States displayed substantial variation in their vector competence for DENV

    The Viral Susceptibility of the Haloferax Species

    Get PDF
    Viruses can infect members of all three domains of life. However, little is known about viruses infecting archaea and the mechanisms that determine their host interactions are poorly understood. Investigations of molecular mechanisms of viral infection rely on genetically accessible virus–host model systems. Euryarchaea belonging to the genus Haloferax are interesting models, as a reliable genetic system and versatile microscopy methods are available. However, only one virus infecting the Haloferax species is currently available. In this study, we tested ~100 haloarchaeal virus isolates for their infectivity on 14 Haloferax strains. From this, we identified 10 virus isolates in total capable of infecting Haloferax strains, which represented myovirus or siphovirus morphotypes. Surprisingly, the only susceptible strain of all 14 tested was Haloferax gibbonsii LR2-5, which serves as an auspicious host for all of these 10 viruses. By applying comparative genomics, we shed light on factors determining the host range of haloarchaeal viruses on Haloferax. We anticipate our study to be a starting point in the study of haloarchaeal virus–host interactions

    The Viral Susceptibility of the Haloferax Species

    Get PDF
    Viruses can infect members of all three domains of life. However, little is known about viruses infecting archaea and the mechanisms that determine their host interactions are poorly understood. Investigations of molecular mechanisms of viral infection rely on genetically accessible virus–host model systems. Euryarchaea belonging to the genus Haloferax are interesting models, as a reliable genetic system and versatile microscopy methods are available. However, only one virus infecting the Haloferax species is currently available. In this study, we tested ~100 haloarchaeal virus isolates for their infectivity on 14 Haloferax strains. From this, we identified 10 virus isolates in total capable of infecting Haloferax strains, which represented myovirus or siphovirus morphotypes. Surprisingly, the only susceptible strain of all 14 tested was Haloferax gibbonsii LR2-5, which serves as an auspicious host for all of these 10 viruses. By applying comparative genomics, we shed light on factors determining the host range of haloarchaeal viruses on Haloferax. We anticipate our study to be a starting point in the study of haloarchaeal virus–host interactions

    Highly divergent CRESS DNA and picorna-like viruses associated with bleached thalli of the green seaweed <i>Ulva</i>

    Get PDF
    Marine macroalgae (seaweeds) are important primary producers and foundation species in coastal ecosystems around the world. Seaweeds currently contribute to an estimated 51% of the global mariculture production, with a long-term growth rate of 6% per year, and an estimated market value of more than US$11.3 billion. Viral infections could have a substantial impact on the ecology and aquaculture of seaweeds, but surprisingly little is known about virus diversity in macroalgal hosts. Using metagenomic sequencing, we characterized viral communities associated with healthy and bleached specimens of the commercially important green seaweed Ulva. We identified 20 putative new and divergent viruses, of which the majority belonged to the Circular Rep-Encoding Single-Stranded (CRESS) DNA viruses [single-stranded (ss)DNA genomes], Durnavirales [double-stranded (ds)RNA], and Picornavirales (ssRNA). Other newly identified RNA viruses were related to the Ghabrivirales, the Mitoviridae, and the Tombusviridae. Bleached Ulva samples contained particularly high viral read numbers. While reads matching assembled CRESS DNA viruses and picorna-like viruses were nearly absent from the healthy Ulva samples (confirmed by qPCR), they were very abundant in the bleached specimens. Therefore, bleaching in Ulva could be caused by one or a combination of the identified viruses but may also be the result of another causative agent or abiotic stress, with the viruses simply proliferating in already unhealthy seaweed tissue. This study highlights how little we know about the diversity and ecology of seaweed viruses, especially in relation to the health and diseases of the algal host, and emphasizes the need to better characterize the algal virosphere. IMPORTANCE Green seaweeds of the genus Ulva are considered a model system to study microbial interactions with the algal host. Remarkably little is known, however, about viral communities associated with green seaweeds, especially in relation to the health of the host. In this study, we characterized the viral communities associated with healthy and bleached Ulva. Our findings revealed the presence of 20 putative novel viruses associated with Ulva, encompassing both DNA and RNA viruses. The majority of these viruses were found to be especially abundant in bleached Ulva specimens. This is the first step toward understanding the role of viruses in the ecology and aquaculture of this green seaweed.</p

    Archival influenza virus genomes from Europe reveal genomic variability during the 1918 pandemic

    Get PDF
    The 1918 influenza pandemic was the deadliest respiratory pandemic of the 20th century and determined the genomic make-up of subsequent human influenza A viruses (IAV). Here, we analyze both the first 1918 IAV genomes from Europe and the first from samples prior to the autumn peak. 1918 IAV genomic diversity is consistent with a combination of local transmission and long-distance dispersal events. Comparison of genomes before and during the pandemic peak shows variation at two sites in the nucleoprotein gene associated with resistance to host antiviral response, pointing at a possible adaptation of 1918 IAV to humans. Finally, local molecular clock modeling suggests a pure pandemic descent of seasonal H1N1 IAV as an alternative to the hypothesis of origination through an intrasubtype reassortment.Peer Reviewe

    Discovery of flavivirus-derived endogenous viral elements in Anopheles mosquito genomes supports the existence of Anopheles -associated insect-specific flaviviruses

    No full text
    International audienceThe Flavivirus genus encompasses several arboviruses of public health significance such as dengue, yellow fever, and Zika viruses. It also includes insect-specific flaviviruses (ISFs) that are only capable of infecting insect hosts. The vast majority of mosquito-infecting flaviviruses have been associated with mosquito species of the Aedes and Culex genera in the Culicinae subfamily, which also includes most arbovirus vectors. Mosquitoes of the Anophelinae subfamily are not considered significant arbovirus vectors; however, flaviviruses have occasionally been detected in field-caught Anopheles specimens. Whether such observations reflect occasional spillover or laboratory contamination or whether Anopheles mosquitoes are natural hosts of flaviviruses is unknown. Here, we provide in silico and in vivo evidence of transcriptionally active, flavivirus-derived endogenous viral elements (EVEs) in the genome of Anopheles minimus and Anopheles sinensis. Such non-retroviral endogenization of RNA viruses is consistent with a shared evolutionary history between flaviviruses and Anopheles mosquitoes. Phylogenetic analyses of the two newly described EVEs support the existence of a distinct clade of Anopheles-associated ISFs
    • …
    corecore