12 research outputs found

    TLR9 signalling inhibits Plasmodium liver infection by macrophage activation.

    Get PDF
    Recognition of pathogen-associated molecular patterns (PAMPs) through Toll-like receptors (TLRs) plays a pivotal role in first-line pathogen defense. TLRs are also likely triggered during a Plasmodium infection in vivo by parasite-derived components. However, the contribution of innate responses to liver infection and to the subsequent clinical outcome of a blood infection is not well understood. To assess the potential effects of enhanced TLR-signalling on Plasmodium infection, we systematically examined the effect of agonist-primed immune responses to sporozoite inoculation in the P. berghei/C57Bl/6 murine malaria model. We could identify distinct stage-specific effects on the course of infection after stimulation with two out of four TLR-ligands tested. Priming with a TLR9 agonist induced killing of pre-erythrocytic stages in the liver that depended on macrophages and the expression of inducible nitric oxide synthase (iNOS). These factors have previously not been recognized as antigen-independent effector mechanisms against Plasmodium liver stages. Priming with TLR4 and -9 agonists also translated into blood stage-specific protection against experimental cerebral malaria (ECM). These insights are relevant to the activation of TLR signalling pathways by adjuvant systems of antimalaria vaccine strategies. The protective role of TLR4-activation against ECM might also explain some unexpected clinical effects observed with pre-erythrocytic vaccine approaches

    Identification of a Pseudomonas aeruginosa PAO1 DNA methyltransferase, its Targets, and physiological roles

    Get PDF
    DNA methylation is widespread among prokaryotes, and most DNA methylation reactions are catalyzed by adenine DNA methyltransferases, which are part of restriction-modification (R-M) systems. R-M systems are known for their role in the defense against foreign DNA; however, DNA methyltransferases also play functional roles in gene regulation. In this study, we used single-molecule real-time (SMRT) sequencing to uncover the genome-wide DNA methylation pattern in the opportunistic pathogen Pseudomonas aeruginosa PAO1. We identified a conserved sequence motif targeted by an adenine methyltransferase of a type I R-M system and quantified the presence of N(6)-methyladenine using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Changes in the PAO1 methylation status were dependent on growth conditions and affected P. aeruginosa pathogenicity in a Galleria mellonella infection model. Furthermore, we found that methylated motifs in promoter regions led to shifts in sense and antisense gene expression, emphasizing the role of enzymatic DNA methylation as an epigenetic control of phenotypic traits in P. aeruginosa Since the DNA methylation enzymes are not encoded in the core genome, our findings illustrate how the acquisition of accessory genes can shape the global P. aeruginosa transcriptome and thus may facilitate adaptation to new and challenging habitats.IMPORTANCE With the introduction of advanced technologies, epigenetic regulation by DNA methyltransferases in bacteria has become a subject of intense studies. Here we identified an adenosine DNA methyltransferase in the opportunistic pathogen Pseudomonas aeruginosa PAO1, which is responsible for DNA methylation of a conserved sequence motif. The methylation level of all target sequences throughout the PAO1 genome was approximated to be in the range of 65 to 85% and was dependent on growth conditions. Inactivation of the methyltransferase revealed an attenuated-virulence phenotype in the Galleria mellonella infection model. Furthermore, differential expression of more than 90 genes was detected, including the small regulatory RNA prrF1, which contributes to a global iron-sparing response via the repression of a set of gene targets. Our finding of a methylation-dependent repression of the antisense transcript of the prrF1 small regulatory RNA significantly expands our understanding of the regulatory mechanisms underlying active DNA methylation in bacteria

    Genotype–phenotype associations within the Li-Fraumeni spectrum: a report from the German Registry

    Get PDF
    Li-Fraumeni syndrome (LFS) is a cancer predisposition syndrome caused by pathogenic TP53 variants. The condition represents one of the most relevant genetic causes of cancer in children and adults due to its frequency and high cancer risk. The term Li-Fraumeni spectrum reflects the evolving phenotypic variability of the condition. Within this spectrum, patients who meet specific LFS criteria are diagnosed with LFS, while patients who do not meet these criteria are diagnosed with attenuated LFS. To explore genotype–phenotype correlations we analyzed 141 individuals from 94 families with pathogenic TP53 variants registered in the German Cancer Predisposition Syndrome Registry. Twenty-one (22%) families had attenuated LFS and 73 (78%) families met the criteria of LFS. NULL variants occurred in 32 (44%) families with LFS and in two (9.5%) families with attenuated LFS (P value < 0.01). Kato partially functional variants were present in 10 out of 53 (19%) families without childhood cancer except adrenocortical carcinoma (ACC) versus 0 out of 41 families with childhood cancer other than ACC alone (P value < 0.01). Our study suggests genotype–phenotype correlations encouraging further analyses. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13045-022-01332-1

    BACTOME-a reference database to explore the sequence- and gene expression-variation landscape of Pseudomonas aeruginosa clinical isolates.

    Get PDF
    Extensive use of next-generation sequencing (NGS) for pathogen profiling has the potential to transform our understanding of how genomic plasticity contributes to phenotypic versatility. However, the storage of large amounts of NGS data and visualization tools need to evolve to offer the scientific community fast and convenient access to these data. We introduce BACTOME as a database system that links aligned DNA- and RNA-sequencing reads of clinical Pseudomonas aeruginosa isolates with clinically relevant pathogen phenotypes. The database allows data extraction for any single isolate, gene or phenotype as well as data filtering and phenotypic grouping for specific research questions. With the integration of statistical tools we illustrate the usefulness of a relational database structure for the identification of phenotype-genotype correlations as an essential part of the discovery pipeline in genomic research. Furthermore, the database provides a compilation of DNA sequences and gene expression values of a plethora of clinical isolates to give a consensus DNA sequence and consensus gene expression signature. Deviations from the consensus thereby describe the genomic landscape and the transcriptional plasticity of the species P. aeruginosa. The database is available at https://bactome.helmholtz-hzi.de

    Anti-ageing effects of ubiquinone and ubiquinol in a senescence model of human dermal fibroblasts

    No full text
    Coenzyme Q10 (CoQ10) is an endogenous lipophilic quinone found in equilibrium between its oxidised (ubiquinone) and reduced (ubiquinol) form, ubiquitous in biological membranes and endowed with antioxidant and bioenergetic properties, both crucial to the ageing process. CoQ10 biosynthesis decreases with age in different tissues including skin and its biosynthesis can be modulated by 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitors such as statins. Statin-induced CoQ10 deprivation has previously been shown to be associated with the development of a senescence phenotype in cultured human dermal fibroblasts (HDF), hence this model was used to further investigate the role of CoQ10 in skin ageing. The present study aimed to compare the bioavailability of exogenously added CoQ10, in the form of ubiquinone or ubiquinol, to CoQ10-deprived HDF, and to determine their efficacy in rescuing the senescent phenotype induced by CoQ10 deprivation. First, additional senescence markers were implemented to further support the pro-ageing effect of statin-induced CoQ10 deprivation in HDF. Indeed, numerous senescence-associated secretory phenotype (SASP) markers such as p21, IL-8, CXCL1, and MMP-1 were upregulated, whereas components of the extracellular matrix were downregulated (elastin, collagen type 1). Next, we showed that CoQ10 supplementation to statin-treated HDF was able to counteract CoQ10 deprivation and rescued the development of selected senescence/ageing markers in HDF. Ubiquinol resulted more bioavailable than ubiquinone at the same concentration (15 μg/mL) and it significantly improved the cellular oxidative status even within isolated mitochondria highlighting an effective subcellular delivery. Ubiquinol was also more efficient compared to ubiquinone in reverting the expression of the senescent phenotype, quantified in terms of β-galactosidase positivity, p21, collagen type 1, and elastin at the gene and protein expression levels. In conclusion, our results highlight the pivotal role of CoQ10 for skin vitality and strongly support the use of both forms as a beneficial and effective anti-ageing skin care treatment

    Transplanted human pluripotent stem cell-derived mesenchymal stem cells support liver regeneration in Gunn rats

    No full text
    Gunn rats bear a mutation within the uridine diphosphate glucuronosyltransferase-1a1 (Ugt1a1) gene resulting in high serum bilirubin levels as seen in Crigler-Najjar syndrome. In this study, the Gunn rat was used as an animal model for heritable liver dysfunction. Induced mesenchymal stem cells (iMSCs) derived from embryonic stem cells (H1) and induced pluripotent stem cells were transplanted into Gunn rats after partial hepatectomy. The iMSCs engrafted and survived in the liver for up to 2 months. The transplanted iMSCs differentiated into functional hepatocytes as evidenced by partially suppressed hyperbilirubinemia and expression of multiple human-specific hepatocyte markers such as albumin, hepatocyte nuclear factor 4α, UGT1A1, cytokeratin 18, bile salt export pump, multidrug resistance protein 2, Na/taurocholate-cotransporting polypeptide, and α-fetoprotein. These findings imply that transplanted human iMSCs can contribute to liver regeneration in vivo and thus represent a promising tool for the treatment of inherited liver diseases

    MEDB-14. Clinical outcome of pediatric medulloblastoma patients with Li-Fraumeni syndrome

    Get PDF
    PURPOSE: The prognosis for SHH-medulloblastoma (MB) patients with Li-Fraumeni syndrome (LFS) is poor. Due to lack of comprehensive data for these patients, it is challenging to establish effective therapeutic recommendations. We here describe the largest retrospective cohort of pediatric LFS SHH-MB patients to date and their clinical outcomes. PATIENTS AND METHODS: N=31 patients with LFS SHH-MB were included in this retrospective multicenter study. TP53 variant type, clinical parameters including treatment modalities, event-free survival (EFS) and overall survival (OS), as well as recurrence patterns and incidence of secondary neoplasms, were evaluated. RESULTS: All LFS-MBs were classified as SHH subgroup, in 30/31 cases based on DNA methylation analysis. The majority of constitutional TP53 variants (72%) represented missense variants, and all except two truncating variants were located within the DNA-binding domain. 54% were large cell anaplastic, 69% gross totally resected and 81% had M0 status. The 2-(y)ear and 5-(y)ear EFS were 26% and 8,8%, respectively, and 2y- and 5y-OS 40% and 12%. Patients who received post-operative radiotherapy (RT) followed by chemotherapy (CT) showed significantly better outcomes (2y-EFS:43%) compared to patients who received CT before RT (30%) (p&lt;0.05). The 2y-EFS and 2y-OS were similar when treated with protocols including high-dose chemotherapy (EFS:22%, OS:44%) compared to patients treated with maintenance-type chemotherapy (EFS:31%, OS:45%). Recurrence occurred in 73.3% of cases independent of resection or M-status, typically within the radiation field (75% of RT-treated patients). Secondary malignancies developed in 12.5% and were cause of death in all affected patients. CONCLUSIONS: Patients with LFS-MBs have a dismal prognosis. This retrospective study suggests that upfront RT may increase EFS, while intensive therapeutic approaches including high-dose chemotherapy did not translate into increased survival of this patient group. To improve outcomes of LFS-MB patients, prospective collection of clinical data and development of treatment guidelines are required

    Clinical outcome of pediatric medulloblastoma patients with Li-Fraumeni syndrome.

    No full text
    BACKGROUND The prognosis for Li-Fraumeni syndrome (LFS) patients with medulloblastoma (MB) is poor. Comprehensive clinical data for this patient group is lacking, challenging the development of novel therapeutic strategies. Here, we present clinical and molecular data on a retrospective cohort of pediatric LFS MB patients. METHODS In this multinational, multicenter retrospective cohort study, LFS patients under 21 years with MB and class 5 or class 4 constitutional TP53 variants were included. TP53 mutation status, methylation subgroup, treatment, progression free- (PFS) and overall survival (OS), recurrence patterns, and incidence of subsequent neoplasms were evaluated. RESULTS The study evaluated 47 LFS individuals diagnosed with MB, mainly classified as DNA methylation subgroup "SHH_3" (86%). The majority (74%) of constitutional TP53 variants represented missense variants. The 2- and 5-year (y-) PFS were 36% and 20%, and 2- and 5y-OS were 53% and 23%, respectively. Patients who received post-operative radiotherapy (RT) (2y-PFS: 44%, 2y-OS: 60%) or chemotherapy before RT (2y-PFS: 32%, 2y-OS: 48%) had significantly better clinical outcome then patients who were not treated with RT (2y-PFS: 0%, 2y-OS: 25%). Patients treated according to protocols including high-intensity chemotherapy and patients who received only maintenance-type chemotherapy showed similar outcomes (2y-PFS: 42% and 35%, 2y-OS: 68% and 53%, respectively). CONCLUSIONS LFS MB patients have a dismal prognosis. In the presented cohort use of RT significantly increased survival rates, whereas chemotherapy intensity did not influence their clinical outcome. Prospective collection of clinical data and development of novel treatments are required to improve the outcome of LFS MB patients

    Abstracts of the 52nd Workshop for Pediatric Research

    No full text
    corecore