11 research outputs found

    The interplay between models and public health policies: Regional control for a class of spatially structured epidemics (think globally, act locally)

    Get PDF
    A review is presented here of the research carried out, by a group including the authors, on the mathematical analysis of epidemic systems. Particular attention is paid to recent analysis of optimal control problems related to spatially structured epidemics driven by environmental pollution. A relevant problem, related to the possible eradication of the epidemic, is the so called zero stabilization. In a series of papers, necessary conditions, and sufficient conditions of stabilizability have been obtained. It has been proved that it is possible to diminish exponentially the epidemic process, in the whole habitat, just by reducing the concentration of the pollutant in a nonempty and sufficiently large subset of the spatial domain. The stabilizability with a feedback control of harvesting type is related to the magnitude of the principal eigenvalue of a certain operator. The problem of finding the optimal position (by translation) of the support of the feedback stabilizing control is faced, in order to minimize both the infected population and the pollutant at a certain finite time

    Vaccination in a two-group epidemic model

    No full text
    Epidemic progression depends on the structure of the population. We study a two-group epidemic model with the difference between the groups determined by the rate of disease transmission. The basic reproduction number, the maximal and the total number of infected individuals are characterized by the proportion between the groups. We consider different vaccination strategies and determine the outcome of the vaccination campaign depending on the distribution of vaccinated individuals between the groups

    Analysis and control of age-dependent population dynamics

    No full text

    Stabilization for a Periodic Predator-Prey System

    No full text
    A reaction-diffusion system modelling a predator-prey system in a periodic environment is considered. We are concerned in stabilization to zero of one of the components of the solution, via an internal control acting on a small subdomain, and in the preservation of the nonnegativity of both components

    Dynamics of Persistent Epidemic and Optimal Control of Vaccination

    No full text
    International audienceThis paper is devoted to a model of epidemic progression, taking into account vaccination and immunity waning. The model consists of a system of delay differential equations with time delays determined by the disease duration and immunity loss. Periodic epidemic outbreaks emerge as a result of the instability of a positive stationary solution if the basic reproduction number exceeds some critical value. Vaccination can change epidemic dynamics, resulting in more complex aperiodic oscillations confirmed by some data on Influenza A in Norway. Furthermore, the measures of social distancing during the COVID-19 pandemic weakened seasonal influenza in 2021, but increased it during the next year. Optimal control allows for the minimization of epidemic cost by vaccination

    Null controllability of a nonlinear diffusion system in reactor dynamics

    Get PDF
    summary:In this paper, we prove the exact null controllability of certain diffusion system by rewriting it as an equivalent nonlinear parabolic integrodifferential equation with variable coefficients in a bounded interval of R\mathbb R with a distributed control acting on a subinterval. We first prove a global null controllability result of an associated linearized integrodifferential equation by establishing a suitable observability estimate for adjoint system with appropriate assumptions on the coefficients. Then this result is successfully used with some estimates for parabolic equation in LkL^k spaces together with classical fixed point theorem, to prove the null controllability of the nonlinear model

    Vaccination in a two-group epidemic model

    No full text
    International audienceEpidemic progression depends on the structure of the population. We study a two-group epidemic model with the difference between the groups determined by the rate of disease transmission. The basic reproduction number, the maximal and the total number of infected individuals are characterized by the proportion between the groups. We consider different vaccination strategies and determine the outcome of the vaccination campaign depending on the distribution of vaccinated individuals between the groups
    corecore