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Abstract. A review is presented here of the research carried out, by a group
including the authors, on the mathematical analysis of epidemic systems. Par-

ticular attention is paid to recent analysis of optimal control problems related

to spatially structured epidemics driven by environmental pollution. A relevant
problem, related to the possible eradication of the epidemic, is the so called

zero stabilization. In a series of papers, necessary conditions, and sufficient

conditions of stabilizability have been obtained. It has been proved that it is
possible to diminish exponentially the epidemic process, in the whole habitat,

just by reducing the concentration of the pollutant in a nonempty and suffi-

ciently large subset of the spatial domain. The stabilizability with a feedback
control of harvesting type is related to the magnitude of the principal eigen-

value of a certain operator. The problem of finding the optimal position (by
translation) of the support of the feedback stabilizing control is faced, in order

to minimize both the infected population and the pollutant at a certain finite

time.

1. Introduction. It is worth to start by quoting Bradley [15] “For real progress,
the mathematical modeller, as well as the epidemiologist must have mud on his
boots”!

Indeed most of the pioneers in mathematical epidemiology have got “mud on their
boots”; it is a duty and a pleasure to acknowledge here the ones who, apart from D.
Bernoulli (1760) [14], established the roots of this field of research (in chronological
order): W. Farr (1840) [41], W.H. Hamer (1906) [45], J. Brownlee (1911) [17], R.
Ross (1911) [63], E. Martini (1921) [59], A. J. Lotka (1923) [57], W.O. Kermack and
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Figure 1. The transfer diagram for an SEIR compartmental
model including the susceptible class S, the exposed, but not yet
infective, class E, the infective class I, and the removed class R

A. G. McKendrick (1927) [51], H. E. Soper (1929) [66], L. J. Reed and W. H. Frost
(1930) [42], [1], M. Puma (1939) [62], E. B. Wilson and J. Worcester (1945) [69], M.
S. Bartlett (1949) [12], G. MacDonald (1950) [58], N.T.J. Bailey (1950) [11], before
many others; the pioneer work by En’ko (1989) [39] suffered from being written in
Russian; historical accounts of epidemic theory can be found in [64], [35], [36]. After
the late ‘70’s there has been an explosion of interest in mathematical epidemiology,
also thanks to the establishment of a number of new journals dedicated to mathe-
matical biology. The above mentioned pioneers explored possible models to match
real data, based on genuine epidemiological reasoning; further they did not choose
a priori deterministic models as opposed to stochastic models. Unfortunately the
most recent literature has suffered of a dramatic splitting in both approaches and
methods, which has induced criticism among applied epidemiologists. About the
relevance of mathematics in Life Sciences, Wilson and Worcester had since long [69]
expressed a fundamental statement that we like to share: “Although mathematics
is used to develop the logical inferences from known laws, it may also used to inves-
tigate the consequences of various assumptions when the laws are not known, ....
one of the functions of mathematical and philosophical reasoning is to keep us alive
to what may be only possibilities, when the actualities are not yet known”.

The scheme of this presentation is the following: in Section 2 a general structure
of mathematical models for epidemic systems is presented in the form of compart-
mental systems; in Paragraph 2.1 the possible derivation of deterministic models
is presented as an approximation, for large populations, of stochastic models; in
Paragraph 2.2 nonlinear models are discussed as opposed to the standard epidemic
models based on the “law of mass” action assumption; in Paragraph 2.3 the concept
of field of forces of infection is discussed for structured populations. In Section 3 the
particular case of man-environment-man infection is discussed, and, with respect
to these models, in Section 4 optimal control problems are presented in the case
of boundary feedback. Finally in Section 5 the most important problem of global
eradication via regional control is presented.

2. Compartmental models. Model reduction for epidemic systems is obtained
via the so-called compartmental models. In a compartmental model the total pop-
ulation (relevant to the epidemic process) is divided into a number (usually small)
of discrete categories: susceptibles, infected but not yet infective (latent), infective,
recovered and immune, without distinguishing different degrees of intensity of in-
fection; possible structures in the relevant population can be superimposed when
required (see e.g. Figure 1).
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A key problem in modelling the evolution dynamics of infectious diseases is the
mathematical representation of the mechanism of transmission of the contagion.
The concepts of “force of infection” and “field of forces of infection” (when dealing
with structured populations) will be the guideline of this presentation.

We may like to remark here (see also [19]) that this concept is not very far from
the medieval idea that infectious diseases were induced into a human being by a
flow of bad air (“mal aria” in Italian). On the other hand in quantum field theory
any field of forces is due to an exchange of particles: in this case bacteria, viruses,
etc., so that the corpuscular and the continuous concepts of field are conceptually
unified.

It is of interest to identify the possible structures of the field of forces of infection
which depend upon the specific mechanisms of transmission of the disease among
different groups. This problem has been raised since the very first models when age
and/or space dependence had to be taken into account.

Suppose at first that the population in each compartment does not exhibit any
structure (space location, age, etc.). The infection process (S to I) is driven by
a force of infection (f.i.) due to the pathogen material produced by the infective
population and available at time t

(f.i.)(t) = [g(I(.))](t)

which acts upon each individual in the susceptible class. Thus a typical rate of the
infection process is given by the

(incidence rate)(t) = (f.i.)(t)S(t).

From this point of view, the so called “law of mass action” simply corresponds
to choosing a linear dependence of g(I) upon I

(f.i.)(t) = kI(t).

The great advantage, from a mathematical point of view, is that the evolution of
the epidemic is described (in the space and time homogeneous cases) by systems of
ODE ’s which contain at most bilinear terms.

Indeed, for several models of this kind it is possible to prove global stability of
nontrivial equilibria. A general result in this direction has been proposed in [13]
where it has been shown that many bilinear epidemic systems can be expressed in
the general form

dz

dt
= diag(z)(e+Az) + b(z)

where z(t) ∈ Rn+ is the state vector, e ∈ Rn+ is a constant vector, A is an n × n
constant matrix, and diag(z) is the diagonal matrix with diagonal entries zi. Further

b(z) = c+Bz

with c ∈ Rn+ a constant vector, and B = (bij)i,j=1,...,n a real constant matrix such

that

bij ≥ 0, i, j = 1, . . . , n; bii = 0, i = 1, . . . , n.

Once a strictly positive equilibrium z∗ ∈ Rn∗+ has been somehow identified, the
major “tool” in analyzing these systems is the so called Volterra-Goh Lyapunov
function [44],

V (z) :=

n∑
i=1

wi

(
zi − z∗i − z∗i ln

zi
z∗i

)
, z ∈ Rn∗
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where wi > 0, i = 1, . . . , n , are real constants (the weights).
Here we denote by

Rn∗+ := {z ∈ Rn | zi > 0, i = 1, . . . , n} ,

and clearly
V := Rn∗+ → R+.

A discussion on V as a relative entropy can be found in [23].

2.1. Deterministic approximation of stochastic models. Actually for popu-
lations of a limited size, the stochastic version is more appropriate; but it is not
difficult to show that for sufficiently large populations, the usual deterministic ap-
proximation can be gained via suitable laws of large numbers (see e.g. [40]).

The stochastic process modelling an SIR epidemic, which takes into account
the rescaling of the force of infection due to the size of the total population, is a
multivariate jump Markov process (St, It, Rt)t∈R+ , valued in N3.

Considering the usual transitions

S → I → R,

by assuming the law of mass action, the only nontrivial transition rates are usually
taken as

q(S,I),(S−1,I+1) = κ
I

N
S : infection; (1)

q(S,I),(S,I−1) = δI : removal, (2)

N = St + It +Rt = S0 + I0 = const. (3)

We may notice that the above transition rates can be rewritten as follows

q(S,I),(S−1,I+1) = Nκ
I

N

S

N
; (4)

q(S,I),(S,I−1) = Nδ
I

N
. (5)

So that both transition rates are of the form

q
(N)
k,k+l = Nβl

(
k

N

)
(6)

for
k = (S, I) (7)

and

k + l =

{
(S, I − 1),
(S − 1, I + 1).

(8)

Due to the constancy of the total population we may reduce the analysis to the
Markov process X̂(N) := (St, It), which satisfies a stochastic evolution equation of
the form

X̂(N)(t) = X̂(N)(0) +
∑
l∈Z2

lYl

(
N

∫ t

0

βl

(
X̂(N)(τ)

N

)
dτ

)
, (9)

for t < τ∞, the possible Markov time of explosion of the epidemic.
Here the Yl are independent standard Poisson processes, and the sum is carried

out only on the l’s for which βl 6= 0.
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By setting

F (x) =
∑
l∈Z2

lβl(x), x ∈ R2 (10)

for the scaled process

X(N) =
1

N
X̂(N), (11)

we have

X(N)(t) = X(N) (0) +

∫ t

0

F (X(N)(τ))dτ

+
∑
l∈Z2

l

N
Ỹl

(
N

∫ t

0

βl

(
X(N)(τ)

)
dτ

)
(12)

where the

Ỹl(u) = Yl(u)− u (13)

are independent centered standard Poisson processes, so that the last term in the
above equation is a zero-mean martingale.

Of interest is the asymptotic behavior of the system for a large value of the scale
parameter N.

By the strong law of large numbers for Poisson processes (more generally for
martingales), we know that

lim
N→∞

sup
u≤v

∣∣∣∣ 1

N
Ỹl(Nu)

∣∣∣∣ = 0, a.s., (14)

for any v ≥ 0. As a consequence, it is not a surprise the following result, based on
Doob’s inequality for martingales [40].

Theorem 2.1. Under suitable regularity assumptions on βl and on F, if

lim
N→∞

X(N)(0) = x0 ∈ R2, (15)

then, for every t ≥ 0,

lim
N→∞

sup
τ≤t

∣∣∣X(N)(τ)− x(τ)
∣∣∣ = 0, a.s., (16)

where x(t), t ∈ R+ is the unique solution of

x(t) = x0 +

∫ t

0

F (x(s))ds, t ≥ 0, (17)

wherever it exists.

In our case the above deterministic system becomes the usual deterministic SIR
model 

ds(t)

dt
= −κs(t)s(t)

di(t)

dt
= κs(t)i(t)− δi(t)

(18)

for

s(t) := lim
N→∞

St
N
, i := lim

N→∞

It
N
.
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A different scaling, may give rise to the diffusion approximation of the epidemic
system (see [40], [22], and [67], for a variety of applications to Biology and Medicine).

An interesting “pathology” arises when the relevant populations are very small,
so that the deterministic approximation of the epidemic system may fail. Indeed
for many epidemic models, above threshold the infective fraction of the relevant de-
terministic equations, while tending eventually to large values of a possible endemic
level, may get very close to zero, but still never becomes extinct. This situation had
been analyzed in [47] by suitable perturbation methods on the Fokker-Planck equa-
tion associated with the diffusion approximation of a typical SIR epidemic model,
which lead to a non trivial extinction probability of the infective population, when-
ever its deterministic counterpart may get close to zero.

It is worth mentioning that the discussion regarding the original stochastic model
and its deterministic counterpart had involved J.L. Doob and others, who proposed
(in 1945) [38] an algorithm for generating statistically correct trajectories of the
stochastic system. It was presented by D. Gillespie in 1976 [43] as the Doob-Gillespie
algorithm, well known in computational chemistry and physics.

2.2. Nonlinear models. Referring to the “Law of mass Action”, Wilson and
Worcester [69] stated the following:

“It would in fact be remarkable, in a situation so complex as that of the passage
of an epidemic over a community, if any simple law adequately represented the
phenomenon in detail ... even to assume that the new case rate should be set equal
to any function ... might be questioned”.

Indeed Wilson and Worcester [69], and Severo [65] had been among the first
epidemic modelers including nonlinear forces of infection of the form

(f.i.)(t) = κI(t)pS(t)q

in their investigations. Here I(t) denotes the number of persons who are infective,
and S(t) denotes the number of persons who are susceptible to the infection.

Independently, during the analysis of data regarding the spread of a cholera
epidemic in Southern Italy during 1973, in [28] the authors suggested the need to
introduce a nonlinear force of infection in order to explain the specific behavior
emerging from the available data.

A more extended analysis for a variety of proposed generalizations of the classical
models known as Kermack-McKendrick models, appeared in [29], though nonlinear
models became widely accepted in the literature only a decade later, after the paper
[55].

Nowadays models with nonlinear forces of infection are analyzed within the study
of various kinds of diseases; typical expressions include the so called Holling type
functional responses (see e.g. [29], [48])

(f.i.)(t) = g(I(t)) ;

with

g(I) =
k Ip

α+ β Iq
, p, q > 0 . (19)

Particular cases are
g(I) = k Ip , p > 0 (20)

For the case p = q we have the behaviors described in Figure 2.
A rather general analysis regarding existence and stability of nontrivial equilibria

for model (19) has been carried out in a series of papers [61], [16], [56], [48] (see
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Figure 2. Nonlinear forces of infection [29]

also [19], and [68]). The particular case p = q = 2 in model (19) induces a saddle
point behavior as analyzed in [26] and [31] (see Section 3 for the case with spatial
structure).

Additional shapes of g(I), as proposed in [29] which may decrease for large values
of I, may be interpreted as “awareness” effects in the contact rates. Significant
contributions to this concept and related epidemiological issues in recent literature
can be found in [37].

Further extensions include a nonlinear dependence upon both I and S , as dis-
cussed in modelling AIDS epidemics (see e.g. [32], [33], and references therein),
where the social structure of the host population is analyzed too.

2.3. Structured populations. When dealing with populations which exhibit some
structure (identified here by a parameter z), either discrete (e.g. social groups) or
continuous (e.g. space location, age, etc.), the target of the infection process is a
specific “subgroup” z in the susceptible class, so that the force of infection has to be
evaluated with reference to that specific subgroup. This induces the introduction
of a “field of forces of infection” (f.i.)(z; t) such that the incidence rate at time t at
the specific “location” z will be given by

(incidence rate)(z; t) = (f.i.)(z; t) s(z; t).

When dealing with populations with space structure the relevant quantities are
spatial densities, such as s(z; t) and i(z; t), the spatial densities of susceptibles and
of infectives respectively, at a point z of the habitat Ω, and at time t ≥ 0.

The corresponding total populations are given by

S(t) =

∫
Ω

s(z; t) dz, I(t) =

∫
Ω

i(z; t) dz
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In the law of mass action model, if only local interactions are allowed, the field
at point z ∈ Ω is given by

(f.i.)(z; t) = k(z) i(z; t).

On the other hand if we wish to take distant interactions too into account, as
proposed by D.G. Kendall in [50], the field at a point z ∈ Ω is given by

(f.i.)(z; t) =

∫
Ω

k(z, z′) i(z′; t) dz′ .

For this case the emergence of travelling waves has been shown in [50] and [9].
The analysis of the diffusion approximation of Kendall’s model can be found in [49].

When dealing with populations with an age structure, we may interpret the
parameter z as the age-parameter so that the first model above is a model with
intracohort interactions while the second one is a model with intercohort interactions
(see e.g. [18], and references therein).

A large literature on the subject can be found in [19].

3. Spatially structured man-environment-man epidemics. A widely
accepted model for the spatial spread of epidemics in an habitat Ω, via the en-
vironmental pollution produced by the infective population, e.g. via the excretion
of pathogens in the environment, is the following, as proposed in [20], [21] (see also
[19], and references therein).

Typical real cases include typhoid fever, malaria, schistosomiasis, cholera, etc.
(see e.g. [34], [6]).

∂u1

∂t
(x, t) = d1∆u1(x, t)− a11u1(x, t) +

∫
Ω

k(x, x′)u2(x′, t)dx′

∂u2

∂t
(x, t) = −a22u2(x, t) + g(u1(x, t))

(21)

in Ω ⊂ RN (N ≥ 1), a nonempty bounded domain with a smooth boundary ∂Ω;
for t ∈ (0,+∞), where a11 ≥ 0, a22 ≥ 0, d1 > 0 are constants.

• u1(x, t) denotes the concentration of the pollutant (pathogen material) at a
spatial location x ∈ Ω, and a time t ≥ 0;

• u2(x, t) denotes the spatial distribution of the infective population.
• The terms −a11u1(x, t) and −a22u2(x, t) model natural decays.
• The total susceptible population is assumed to be sufficiently large with re-

spect to the infective population, so that it can be taken as constant.

Environmental pollution is produced by the infective population, so that in the
first equation of System (21), the integral term∫

Ω

k(x, x′)u2(x′, t)dx′

expresses the fact that the pollution produced at any point x′ ∈ Ω of the habitat is
made available at any other point x ∈ Ω; when dealing with human pollution, this
may be due to either malfunctioning of the sewage system, or improper dispersal of
sewage in the habitat. Linearity of the above integral operator is just a simplifying
option.

Model (21) includes spatial diffusion of the pollutant, due to uncontrolled ad-
ditional causes of dispersion (with a constant diffusion coefficient to avoid purely
technical complications); we assume that the infective population does not diffuse
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(the case with diffusion would be here a technical simplification). As such, System
(21) can be adopted as a good model for the spatial propagation of an infection in
agriculture and forests, too.

The above model is part of another important class of epidemics which exhibit a
quasimonotone (cooperative) behavior (see [19]). For this class of problems stability
of equilibria can be shown by monotone methods, such as the contracting rectangles
technique (see [52], [53]).

The local “incidence rate” at point x ∈ Ω, and time t ≥ 0, is

(i.r.)(t) = g(u1(x, t)),

depending upon the local concentration of the pollutant.

3.1. Seasonality. If we wish to model a large class of fecal-oral transmitted in-
fectious diseases, such as typhoid fever, infectious hepatitis, cholera, etc., we may
include the possible seasonal variability of the environmental conditions, and their
impact on the habits of the susceptible population, so that the relevant parameters
are assumed periodic in time, all with the same period T ∈ (0,+∞).

As a purely technical simplification, we may assume that only the incidence rate
is periodic, and in particular that it can be expressed as

(i.r.)(x, t) = h(t, u1(x, t)) = p(t)g(u1(x, t)),

where h, the functional dependence of the incidence rate upon the concentration
of the pollutant, can be chosen as in the time homogeneous case, with possible
behaviors as shown in Figure 2.

The explicit time dependence of the incidence rate is given via the function p(·),
which is assumed to be a strictly positive, continuous and T−periodic function of
time; i.e. for any t ∈ R,

p(t) = p(t+ T ).

Remark 1. The results can be easily extended to the case in which also a11, a22

and k are T−periodic functions.

In [21] the above model was studied, and sufficient conditions were given for either
the asymptotic extinction of an epidemic outbreak, or the existence and stability
of an endemic state; while in [27] the periodic case was additionally studied, and
sufficient conditions were given for either the asymptotic extinction of an epidemic
outbreak, or the existence and stability of a periodic endemic state with the same
period of the parameters.

3.2. Saddle point behaviour. The choice of g has a strong influence on the
dynamical behavior of system (21). The case in which g is a monotone increasing
function with constant concavity has been analyzed in an extensive way (see [19],
[24], [26]); concavity leads to the existence (above a parameter threshold) of exactly
one nontrivial endemic state and to its global asymptotic stability. In order to better
clarify the situation, consider first the spatially homogeneous case (ODE system)
associated with system (21); namely

dz1

dt
(t) = −a11z1(t) + a12z2(t)

du2

dt
(t) = −a22z2(t) + g(z1(t))

(22)
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In [26] and [60] the bistable case (in which system (22) may admit two nontrivial
steady states, one of which is a saddle point in the phase plane) was obtained
by assuming that the force of infection, as a function of the concentration of the
pollutant, is sigma shaped. In [60] this shape had been obtained as a consequence
of the sexual reproductive behavior of the schistosomes. In [26] (see also [25]) the
case of fecal-oral transmitted diseases was considered; an interpretation of the sigma
shape of the force of infection was proposed to model the response of the immune
system to environmental pollution: the probability of infection is negligible at low
concentrations of the pollutant, but increases with larger concentrations; it then
becomes concave and saturates to some finite level as the concentration of pollutant
increases without limit.

Let us now refer to the following simplified form of System (21), where as kernel
we have taken k(x, x′) = a12δ(x− x′),

∂u1

∂t
(x, t) = d1∆u1(x, t)− a11u1(x, t) + a12u2(x, t)

∂u2

∂t
(x, t) = −a22u2(x, t) + g(u1(x, t))

(23)

The concavity of g induces concavity of its evolution operator, which, together
with the monotonicity induced by the quasi monotonicity of the reaction terms in
(23), again imposes uniqueness of the possible nontrivial endemic state. On the
other hand, in the case where g is sigma shaped, monotonicity of the solution op-
erator is preserved, but as we have already observed in the ODE case, uniqueness
of nontrivial steady states is no longer guaranteed. Furthermore, the saddle point
structure of the phase space cannot be easily transferred from the ODE to the PDE
case, as discussed in [26], [31]. In [26], homogeneous Neumann boundary condi-
tions were analyzed; in this case nontrivial spatially homogeneous steady states
are still possible. But when we deal with homogeneous Dirichlet boundary condi-
tions or general third-type boundary conditions, nontrivial spatially homogeneous
steady states are no longer allowed. In [31] this problem was faced in more detail;
the steady-state analysis was carried out and the bifurcation pattern of nontrivial
solutions to system (23) was determined when subject to homogeneous Dirichlet
boundary conditions. When the diffusivity of the pollutant is small, the existence
of a narrow bell-shaped steady state was shown, representing very likely a saddle
point for the dynamics of (23). Numerical experiments confirm the bistable situ-
ation: “small” outbreaks stay localized under this bell-shaped steady state, while
“large” epidemics tend to invade the whole habitat.

4. Boundary feedback. An interesting problem concerns the case of boundary
feedback of the pollutant, which has been proposed in [24], and further analyzed in
[30]; an optimal control problem has been later analyzed in [8].

In this case the reservoir of the pollutant generated by the human population
is spatially separated from the habitat by a boundary through which the positive
feedback occurs. A model of this kind has been proposed as an extension of the
ODE model for fecal-oral transmitted infections in Mediterranean coastal regions
presented in [28].

For this kind of epidemics the infectious agent is multiplied by the infective
human population and then sent to the sea through the sewage system; because
of the peculiar eating habits of the population of these regions, the agent may
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return via some diffusion-transport mechanism to any point of the habitat, where
the infection process is restarted.

The mathematical model is based on the following system of evolution equations:
∂u1

∂t
(x; t) = ∆u1(x; t)− a11u1(x; t)

∂u2

∂t
(x; t) = −a22u2(x; t) + g(u1(x; t))

in Ω× (0,+∞), subject to the following boundary condition

∂u1

∂ν
(x; t) + αu1(x; t) =

∫
Ω

k(x, x′)u2(x′; t) dx′

on ∂Ω× (0,+∞), and also subject to suitable initial conditions.
Here ∆ is the usual Laplace operator modelling the random dispersal of the

infectious agent in the habitat; the human infective population is supposed not to
diffuse. As usual a11 and a22 are positive constants. In the boundary condition the

left hand side is the general boundary operator B :=
∂

∂ν
+ α(·) associated with the

Laplace operator; on the right hand side the integral operator

H [u2(·, t)] (x) :=

∫
Ω

k(x, x′)u2(x′; t) dx′

describes boundary feedback mechanisms, according to which the infectious agent
produced by the human infective population at time t > 0, at any point x′ ∈ Ω, is
available, via the transfer kernel k(x, x′), at a point x ∈ ∂Ω.

Clearly the boundary ∂Ω of the habitat Ω can be divided into two disjoint parts:
the sea shore Γ1 through which the feedback mechanism may occur, and Γ2 the
boundary on the land, at which we may assume complete isolation.

The parameter α(x) denotes the rate at which the infectious agent is wasted
away from the habitat into the sea along the sea shore. Thus one may well assume
that

α(x), k(x, ·) = 0, for x ∈ Γ2 .

A relevant assumption, of great importance in the control problems that we
have been facing later, is that the habitat Ω is “epidemiologically” connected to its
boundary by requesting that

for any x′ ∈ Ω there exists some x ∈ Γ1 such that k(x, x′) > 0.

This means that from any point of the habitat infective individuals contribute
to polluting at least some point on the boundary (the sea shore).

In the above model delays had been neglected and the feedback process had
been considered to be linear; various extensions have been considered in subsequent
literature.

5. Regional control: Think Globally, Act Locally . Let us now go back to
System (21) in Ω ⊂ RN (N ≥ 1), a nonempty bounded domain with a smooth
boundary ∂Ω; for t ∈ (0,+∞), where a11 ≥ 0, a22 ≥ 0, d1 > 0 are constants.

The public health concern consists of providing methods for the eradication of
the disease in the relevant population, as fast as possible. On the other hand,
very often the entire domain Ω, of interest for the epidemic, is either unknown,
or difficult to manage for an affordable implementation of suitable environmental
sanitation programmes. Think of malaria, schistosomiasis, and alike, in Africa,
Asia, etc.
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Figure 3. Think Globally, Act Locally.

This has led the first author, in a discussion with Jacques Louis Lions in 1989,
to suggest that it might be sufficient to implement such programmes only in a
given subregion ω ⊂ Ω, conveniently chosen so to lead to an effective (exponentially
fast) eradication of the epidemic in the whole habitat Ω. Though, a satisfactory
mathematical treatment of this issue has been obtained only few years later in
[2]. This practice may have an enormous importance in real cases with respect to
both financial and practical affordability. Further, since we propose to act on the
elimination of the pollution only, this practice means an additional nontrivial social
benefit on the human population, since it would not be limited in his social and
alimentation habits.

In this section a review is presented of some results obtained by the authors,
during 2002-2012, concerning stabilization (for both the time homogeneous case
and the periodic case). Conditions have been provided for the exponential decay
of the epidemic in the whole habitat Ω, based on the elimination of the pollutant
in a subregion ω ⊂ Ω. The case of homogeneous third type boundary conditions
has been considered, including the homogeneous Neumann boundary conditions (to
mean complete isolation of the habitat):

∂u1

∂ν
(x, t) + αu1(x, t) = 0 on ∂Ω× (0,+∞),

where α ≥ 0 is a constant and ∂ν denotes the normal derivative.
For the time homogeneous case the following assumptions have been taken:

(H1) g : R→ [0,+∞) is a function satisfying
a) g(x) = 0, for x ∈ (−∞, 0],
b) g is Lipschitz continuous and increasing,
c) g(x) ≤ a21x, for any x ∈ [0,+∞), where a21 > 0;
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(H2) k ∈ L∞(Ω× Ω), k(x, x′) ≥ 0 a.e. in Ω× Ω,∫
Ω

k(x, x′)dx > 0 a.e. x′ ∈ Ω;

(H3) u0
1, u

0
2 ∈ L∞(Ω), u0

1(x), u0
2(x) ≥ 0 a.e. in Ω.

Let ω ⊂⊂ Ω be a nonempty subdomain with a smooth boundary and Ω \ ω a
domain. Denote by χω the characteristic function of ω (we use the convention

χω(x)h(x) = 0, x ∈ RN \ ω,

even if function h is not defined on the whole set RN \ ω).
Our goal is to study the controlled system

∂u1

∂t
(x, t) = d1∆u1(x, t)− a11u1(x, t) +

∫
Ω

k(x, x′)u2(x′, t)dx′

+χω(x) v(x, t), (x, t) ∈ Ω× (0,+∞)
∂u1

∂ν
(x, t) + αu1(x, t) = 0, (x, t) ∈ ∂Ω× (0,+∞)

∂u2

∂t
(x, t) = −a22u2(x, t) + g(u1(x, t)), (x, t) ∈ Ω× (0,+∞)

u1(x, 0) = u0
1(x), u2(x, 0) = u0

2(x), x ∈ Ω,

subject to a control v ∈ L∞loc(ω × [0,+∞)) (which implies that supp(v(t)) ⊂ ω for
t ≥ 0).

We have to mention that existence, uniqueness and nonnegativity of a solution
to the above system can be proved as in [10]. The nonnegativity of u1 and u2 is a
natural requirement due to the biological significance of u1 and u2.

Definition 5.1. We say that our system is zero-stabilizable if for any u0
1 and u0

2

satisfying (H3) a control v ∈ L∞loc(ω× [0,+∞)) exists such that the solution (u1, u2)
satisfies

u1(x, t) ≥ 0, u2(x, t) ≥ 0, a.e. x ∈ Ω, for any t ≥ 0

and

lim
t→∞

‖u1(t)‖L∞(Ω) = lim
t→∞

‖u2(t)‖L∞(Ω) = 0.

Definition 5.2. We say that our system is locally zero-stabilizable if there exists
r0 > 0 such that for any u0

1 and u0
2 satisfying (H3) and ‖u0

1‖L∞(Ω), ‖u0
2‖L∞(Ω) ≤

r0, there exists v ∈ L∞loc(ω × [0,+∞)) such that the solution (u1, u2) satisfies
u1(x, t) ≥ 0, u2(x, t) ≥ 0 a.e. x ∈ Ω, for any t ≥ 0 and limt→+∞ ‖u1(t)‖L∞(Ω) =
limt→+∞ ‖u2(t)‖L∞(Ω) = 0.

Remark 2. It is obvious that if a system is zero-stabilizable, then it is also locally
zero-stabilizable.

A stabilization result for our system, in the case of time independent g, had been
obtained in [2]. In case of stabilizability a complicated stabilizing control had been
provided. A stronger result (which indicates also a simpler stabilizing control) has
been established in [3] using a different approach. Later, in [4] the authors have
further extended the main results to the case of a time T−periodic function g and
provided a very simple stabilizing feedback control.
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In [3], by Krein-Rutman Theorem, it has been shown that
−d1∆ϕ+ a11ϕ−

a21

a22

∫
Ω

k(x, x′)ϕ(x′)dx′ = λϕ, x ∈ Ω \ ω

ϕ(x) = 0, x ∈ ∂ω
∂ϕ

∂ν
(x) + αϕ(x) = 0, x ∈ ∂Ω,

admits a principal (real) eigenvalue λ1(ω), and a corresponding strictly positive
eigenvector ϕ ∈ Int(K) where

K = {ϕ ∈ L∞(Ω); ϕ(x) ≥ 0 a.e. in Ω}.
The following theorem holds [3]:

Theorem 5.3. If λ1(ω) > 0, then for γ ≥ 0 large enough, the feedback control
v := −γu1 stabilizes our system to zero.

Conversely, if h is differentiable at 0 and h′(0) = a21 and if our system is zero-
stabilizable, then λ1(ω) ≥ 0.

Moreover, the proof of the main result in [3] shows that for a given affordable
sanitation effort γ, the epidemic process can be diminished exponentially if λω1,γ > 0,
where λω1,γ is the principal eigenvalue to the following problem:

−d1∆ϕ+ a11ϕ−
a21

a22

∫
Ω

k(x, x′)ϕ(x′)dx′ + γχωϕ = λϕ, x ∈ Ω

∂ϕ

∂ν
(x) + αϕ(x) = 0, x ∈ ∂Ω.

(24)

A natural question related to the practical implementation of the sanitation
policy is the following: “For a given sanitation effort γ > 0 in the region ω, is the
principal eigenvalue λω1,γ positive (and consequently can our epidemic system be
stabilized to zero by the feedback control v := −γu1) ?”

So, the first problem to be treated is the estimation of λω1,γ . Since this eigenvalue
problem is related to a non-self adjoint operator, we cannot use a variational princi-
ple (as Rayleigh’s for selfadjoint operators); hence in [5] the authors have proposed
an alternative method based on the following result:

lim
t→+∞

∫
Ω

yω(x, t)dx = ζ − λω1,γ , (25)

where yω is the unique positive solution to

∂y

∂t
− d1∆y + a11y + γχωy −

a21

a22

∫
Ω

k(x, x′)y(x′, t)dx′

−ζy + (

∫
Ω

y(x, t)dx)y = 0, x ∈ Ω, t > 0

∂y

∂ν
(x, t) + αy(x, t) = 0, x ∈ ∂Ω, t > 0

y(x, 0) = 1, x ∈ Ω,

(26)

and ζ > λω1,γ is a constant.

Remark 3. Problem (26) is a logistic model for the population dynamics with
diffusion and migration. Since the solutions to the logistic models rapidly stabilize,
this means that (25) gives an efficient method to approximate λω1,γ . Namely, for
T > 0 large enough,

ζ −
∫

Ω

yω(x, T )dx
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gives a very good approximation of λω1,γ . The above result leads to a concrete
numerical estimation of λω1,γ by analyzing the “large-time” behavior of the system
for different values of ζ.

We may also remark that, if in (26)

y(x, 0) = y0, x ∈ Ω, (27)

with y0 an arbitrary positive constant, then

lim
t→+∞

∫
Ω

yω1 (x, t)dx = ζ − λω1,γ ,

where yω1 is the solution to (26)-(27).

Assume now that for a given sanitation effort γ, the principal eigenvalue to (24)
satisfies λω1,γ > 0, and consequently v := −γu1 stabilizes to zero the solution to
(21).

Let ω0 be a nonempty open subset of Ω, with a smooth boundary and such that
ω0 ⊂⊂ Ω and Ω \ ω0 is a domain. Consider O the set of all translations ω of ω0,
satisfying ω ⊂⊂ Ω. Since, after all, our initial goal was to eradicate the epidemics,
we are led to the natural problem of “Finding the translation ω∗ of ω (ω ∈ O) which
gives a small value (possibly minimal) of

Rω =

∫
ω

[uω1 (x, T ) + uω2 (x, T )]dx,

at some given finite time T > 0. ”
Here (uω1 , u

ω
2 ) is the solution of (1.1) corresponding to v := −γu1, i.e. (uω1 , u

ω
2 )

is the solution to

∂u1

∂t
(x, t) = d1∆u1(x, t)− a11u1(x, t) +

∫
Ω

k(x, x′)u2(x′, t)dx′

−γχω(x)u1(x, t), (x, t) ∈ Ω× (0,+∞)
∂u1

∂ν
(x, t) + αu1(x, t) = 0, (x, t) ∈ ∂Ω× (0,+∞)

∂u2

∂t
(x, t) = −a22u2(x, t) + g(u1(x, t)), (x, t) ∈ Ω× (0,+∞)

u1(x, 0) = u0
1(x), x ∈ Ω

u2(x, 0) = u0
2(x), x ∈ Ω.

(28)

For this reason we are going to evaluate the derivative of Rω with respect to
translations of ω. This will allow to derive a conceptual iterative algorithm to
improve at each step the position (by translation) of ω in order to get a smaller
value for Rω.

5.1. The derivative of Rω with respect to translations. For any ω ∈ O and
V ∈ Rn we define the derivative

dRω(V ) = lim
ε→0

RεV+ω −Rω

ε
.

For basic results and methods in the optimal shape design theory we refer to [46].

Theorem 5.4. For any ω ∈ O and V ∈ Rn we have that

dRω(V ) = γ

∫ T

0

∫
∂ω

uω1 (x, t)pω1 (x, t)ν(x) · V dσ dt,

where (pω1 , p
ω
2 ) is the solution to the adjoint problem
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∂p1

∂t
+ d1∆p1 − a11p1 − γχωp1 + g′(uω1 )p2 = 0, x ∈ Ω, t > 0

∂p2

∂t
+

∫
Ω

k(x′, x)p1(x′, t)dx′ − a22p2 = 0, x ∈ Ω, t > 0

∂p1

∂ν
(x, t) + αp(x, t) = 0, x ∈ ∂Ω, t > 0

p1(x, T ) = p2(x, T ) = 1, x ∈ Ω.

(29)

Here ν(x) is the normal inward versor at x ∈ ∂ω (inward with respect to ω).

For the construction of the adjoint problems in optimal control theory we refer
to [54].

Based on Theorem 5.4, in [5] the authors have proposed a conceptual iterative
algorithm to improve the position (by translation) of ω ∈ O (in order to obtain a
smaller value for Rω.

5.2. The periodic case. As a purely technical simplification, we have assumed
that only the incidence rate is periodic, and in particular that it can be expressed
as

(i.r.)(x, t) = h(t, u1(x, t)) = p(t)g(u1(x, t)),

were g, the functional dependence of the incidence rate upon the concentration of
the pollutant, can be chosen as in the time homogeneous case.

In this case our goal is to study the controlled system

∂u1

∂t
(x, t) = d1∆u1(x, t)− a11u1(x, t) +

∫
Ω

k(x, x′)u2(x′, t)dx′

+χω(x)v(x, t), (x, t) ∈ Ω× (0,+∞)
∂u1

∂ν
(x, t) + αu1(x, t) = 0, (x, t) ∈ ∂Ω× (0,+∞)

∂u2

∂t
(x, t) = −a22u2(x, t) + h(t, u1(x, t)), (x, t) ∈ Ω× (0,+∞)

u1(x, 0) = u0
1(x), u2(x, 0) = u0

2(x), x ∈ Ω,

(30)

with a control v ∈ L∞loc(ω×[0,+∞)) (which implies that supp(v(·, t)) ⊂ ω for t ≥ 0).
The explicit time dependence of the incidence rate is given via the function p(·),

which is assumed to be a strictly positive, continuous and T−periodic function of
time; i.e. for any t ∈ R,

p(t) = p(t+ T ).

Remark 4. The results can be easily extended to the case in which also a11, a22

and k are T−periodic functions.

Consider the following (linear) eigenvalue problem

∂ϕ

∂t
− d1∆ϕ+ a11ϕ−

∫
Ω

k(x, x′)ψ(x′, t)dx′ = λϕ, x ∈ Ω \ ω, t > 0

∂ϕ

∂ν
(x, t) + αϕ(x, t) = 0, x ∈ ∂Ω, t > 0

ϕ(x, t) = 0, x ∈ ∂ω, t > 0
∂ψ

∂t
(x, t) + a22ψ(x, t)− a21p(t)ϕ(x, t) = 0, x ∈ Ω \ ω, t > 0

ϕ(x, t) = ϕ(x, t+ T ), ψ(x, t) = ψ(x, t+ T ), x ∈ Ω \ ω, t ≥ 0.

(31)
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By similar procedures, as in the time homogeneous case, Problem (31) admits a
principal (real) eigenvalue λT1 (ω), and a corresponding strictly positive eigenvector
ϕT ∈ Int(KT ) where

KT = {ϕ ∈ L∞(Ω× (0, T )); ϕ(x, t) ≥ 0 a.e. in Ω× (0, T )}.

Theorem 5.5. If λT1 (ω) > 0, then for γ ≥ 0 large enough, the feedback control
v := −γu1 stabilizes (30) to zero.

Conversely, if g is differentiable at 0 and g′(0) = a21, and if (30) is zero-
stabilizable, then λT1 (ω) ≥ 0.

Theorem 5.6. Assume that g is differentiable at 0. Denote by λ̃T1 (ω) the principal
eigenvalue of the problem

∂ϕ

∂t
− d1∆ϕ+ a11ϕ−

∫
Ω

k(x, x′)ψ(x′, t)dx′ = λϕ, x ∈ Ω \ ω, t > 0

∂ϕ

∂ν
(x, t) + αϕ(x, t) = 0, x ∈ ∂Ω, t > 0

ϕ(x, t) = 0, x ∈ ∂ω, t > 0
∂ψ

∂t
(x, t) + a22ψ(x, t)− g′(0)p(t)ϕ(x, t) = 0, x ∈ Ω \ ω, t > 0

ϕ(x, t) = ϕ(x, t+ T ), ψ(x, t) = ψ(x, t+ T ), x ∈ Ω \ ω, t ≥ 0

(32)

If λ̃T1 (ω) > 0, then the system is locally zero stabilizable, and for γ ≥ 0 sufficiently
large, v := −γu1 is a stabilizing feedback control.

Conversely, if the system is locally zero stabilizable, then λ̃T1 (ω) ≥ 0.

Remark 5. Since g′(0) ≤ a21, it follows that λT1 (ω) ≤ λ̃T1 (ω). We conclude now
that

10 If λT1 (ω) > 0, the system is zero-stabilizable;

20 If λ̃T1 (ω) > 0 and λT1 (ω) ≤ 0, the system is locally zero-stabilizable;

30 If λ̃T1 (ω) < 0, the system is not locally zero-stabilizable and consequently it is
not zero stabilizable.

Remark 6. Future directions. Another interesting problem is that when ω consists
of a finite number of mutually disjoint subdomains. The goal is to find the best
position for each subdomain. A similar approach can be used.

In a recently submitted paper [7], the problem of the best choice of the subregion
ω has been faced for a general harvesting problem in population dynamics as a shape
optimization problem; our future aim is to apply those results to our problem of
eradication of spatially structured epidemics.
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[8] V. Arnăutu, V. Barbu and V. Capasso, Controlling the spread of a class of epidemics, Appl.

Math. Optimiz., 20 (1989), 297–317.
[9] D. G. Aronson, The asymptotic speed of propagation of a simple epidemic, in Nonlinear

Diffusion, (W. E. Fitzgibbon and A.F. Walker eds.) Pitman, London, 1977, 1–23.

[10] P. Babak, Nonlocal initial problems for coupled reaction-diffusion systems and their applica-
tions, Nonlinear Anal. RWA, 8 (2007), 980–996.

[11] N. T. J. Bailey, A simple stochastic epidemic, Biometrika, 37 (1950), 193–202.

[12] M. S. Bartlett, Some evolutionary stochastic processes, J. Roy. Stat. Soc. Ser. B, 11 (1949),
211–229.

[13] E. Beretta and V. Capasso, On the general structure of epidemic systems. Global asymptotic

stability, Computers and Mathematics in Applications, 12 (1986), 677–694. Special issue in
honour of “R. Bellman”.
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[51] W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epi-
demics, Proc. Roy. Soc. London, Ser. A, 115 (1927), 700–721.

[52] M. A. Krasnoselkii, Positive Solutions of Operator Equations, Nordhooff, Groningen, 1964.

[53] M. A. Krasnoselkii, Translation Along Trajectories of Differential Equations, AMS, Provi-
dence, R. I., 1968.
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