621 research outputs found

    Portfolio choice with high frequency data : CRRA preferences and the liquidity effect

    Get PDF
    This paper suggests a new approach for portfolio choice. In this frame- work, the investor, with CRRA preferences, has two objectives: the maximization of the expected utility and the minimization of the portfolio expected illiquidity. The CRRA utility is measured using the portfolio realized volatility, realized skewness and realized kurtosis, while the portfolio illiquidity is measured using the well-known Amihud illiquidity ratio. Therefore, the investor is able to make her choices directly in the expected utility/liquidity (EU/L) bi-dimensional space. We conduct an empiri- cal analysis in a set of fourteen stocks of the CAC 40 stock market index, using high frequency data for the time span from January 1999 to December 2005 (seven years). The robustness of the proposed model is checked according to the out-of-sample per- formance of different EU/L portfolios relative to the minimum variance and equally weighted portfolios. For different risk aversion levels, the EU/L portfolios are quite competitive and in several cases consistently outperform those benchmarks, in terms of utility, liquidity and certainty equivalent.info:eu-repo/semantics/publishedVersio

    Exact Renormalization of Massless QED2

    Full text link
    We perform the exact renormalization of two-dimensional massless gauge theories. Using these exact results we discuss the cluster property and confinement in both the anomalous and chiral Schwinger models.Comment: 14 pages, no figures, introduction and conclusions modifie

    On the Renormalizability of Theories with Gauge Anomalies

    Full text link
    We consider the detailed renormalization of two (1+1)-dimensional gauge theories which are quantized without preserving gauge invariance: the chiral and the "anomalous" Schwinger models. By regularizing the non-perturbative divergences that appear in fermionic Green's functions of both models, we show that the "tree level" photon propagator is ill-defined, thus forcing one to use the complete photon propagator in the loop expansion of these functions. We perform the renormalization of these divergences in both models to one loop level, defining it in a consistent and semi-perturbative sense that we propose in this paper.Comment: Final version, new title and abstract, introduction and conclusion rewritten, detailed semiperturbative discussion included, references added; to appear in International Journal of Modern Physics

    Benefits of Whole-Body Vibration with an Oscillating Platform for People with Multiple Sclerosis: A Systematic Review

    Get PDF
    The objective of this work was to investigate the effects of whole-body vibration on people with multiple sclerosis (MS). PubMed, CINAHL and Scopus databases were systematically searched for studies on the use of whole-body vibration (WBV) exercise in people with MS. These searches were supplemented with material identified in the references and in the authors' personal files. A qualitative analysis was performed to summarize the findings. Five studies with a total of seventy-one subjects were identified. All of these studies had small numbers of subjects (3–25), and two of the studies had no control groups. Some investigations have shown significant improvements of the muscle strength, of the functional mobility, and of the timed get up and go test in patients with MS. The number of publications found in the databanks searched is small, and in general, they have limitations in the design of protocols with a weakness to the interpretation of the findings. However, the analysis of the findings in these studies permits to conclude that some papers indicate that WBV exercises could benefit patients with MS. In addition, we suggest further larger scale investigations with controlled parameters and well-designed protocols into the effects of WBV exercises in people with MS

    Glutamate transporters in hippocampal LTD/LTP: not just prevention of excitotoxicity

    Get PDF
    Copyright © 2019 Gonçalves-Ribeiro, Pina, Sebastião and Vaz. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.Glutamate uptake is a process mediated by sodium-dependent glutamate transporters, preventing glutamate spillover from the synapse. Typically, astrocytes express higher amounts of glutamate transporters, thus being responsible for most of the glutamate uptake; nevertheless, neurons can also express these transporters, albeit in smaller concentrations. When not regulated, glutamate uptake can lead to neuronal death. Indeed, the majority of the studies regarding glutamate transporters have focused on excitotoxicity and the subsequent neuronal loss. However, later studies have found that glutamate uptake is not a static process, evincing a possible correlation between this phenomenon and the efficiency of synaptic transmission and plasticity. In this review, we will focus on the role of the increase in glutamate uptake that occurs during long-term potentiation (LTP) in the hippocampus, as well as on the impairment of long-term depression (LTD) under the same conditions. The mechanism underpinning the modulatory effect of glutamate transporters over synaptic plasticity still remains unascertained; yet, it appears to have a more prominent effect over the N-methyl-D-aspartate receptor (NMDAR), despite changes in other glutamate receptors may also occur.This work was supported by UID/BIM/50005/2019 [project finnanced by Fundação para a Ciência e a Tecnologia (FCT)/Ministério da Ciência, Tecnologia e Ensino Superior (MCTES) through Fundos do Orçamento de Estado] and PTDC/BTM-SAL/32147/2017 (FCT). JG-R was in receipt of an FCT fellowship (iMM/BI/96-2018).info:eu-repo/semantics/publishedVersio

    Interaction between cannabinoid type 1 and type 2 receptors in the modulation of subventricular zone and dentate Gyrus neurogenesis

    Get PDF
    Copyright © 2017 Rodrigues, Ribeiro, Ferreira, Vaz, Sebastião and Xapelli. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.Neurogenesis in the adult mammalian brain occurs mainly in two neurogenic niches, the subventricular zone (SVZ) and the subgranular zone (SGZ) of the dentate gyrus (DG). Cannabinoid type 1 and 2 receptors (CB1R and CB2R) have been shown to differently modulate neurogenesis. However, low attention has been given to the interaction between CB1R and CB2R in modulating postnatal neurogenesis (proliferation, neuronal differentiation and maturation). We focused on a putative crosstalk between CB1R and CB2R to modulate neurogenesis and cultured SVZ and DG stem/progenitor cells from early postnatal (P1-3) Sprague-Dawley rats. Data showed that the non-selective cannabinoid receptor agonist WIN55,212-2 promotes DG cell proliferation (measured by BrdU staining), an effect blocked by either CB1R or CB2R selective antagonists. Experiments with selective agonists showed that facilitation of DG cell proliferation requires co-activation of both CB1R and CB2R. Cell proliferation in the SVZ was not affected by the non-selective receptor agonist, but it was enhanced by CB1R selective activation. However, either CB1R or CB2R selective antagonists abolished the effect of the CB1R agonist in SVZ cell proliferation. Neuronal differentiation (measured by immunocytochemistry against neuronal markers of different stages and calcium imaging) was facilitated by WIN55,212-2 at both SVZ and DG. This effect was mimicked by either CB1R or CB2R selective agonists and blocked by either CB1R or CB2R selective antagonists, cross-antagonism being evident. In summary, our findings indicate a tight interaction between CB1R and CB2R to modulate neurogenesis in the two major neurogenic niches, thus contributing to further unraveling the mechanisms behind the action of endocannabinoids in the brain.This work was supported by LISBOA-01-0145-FEDER-007391, project co-funded by FEDER through POR Lisboa 2020 (Programa Operacional Regional de Lisboa) from PORTUGAL 2020, and by Fundação para a Ciência e a Tecnologia (FCT). AS thanks the following supports: PTDC/DTP-FTO/3346/2014 from FCT and H2020 Twinning Action from EU (SynaNet 692340). SX is grateful for the support by the COST action BM1402. RR (IMM/BI/42-2016), FR (SFRH/BD/74662/2010), SV (SFRH/BPD/81627/2011), and SX (SFRH/BPD/76642/2011 and IF/01227/2015) were in receipt of a fellowship from FCT.info:eu-repo/semantics/publishedVersio

    Changes in adenosine receptors and neurotrophic factors in the SOD1G93A mouse model of amyotrophic lateral sclerosis: modulation by chronic caffeine

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is characterized by the progressive degeneration of corticospinal tract motor neurons. Previous studies showed that adenosine-mediated neuromodulation is disturbed in ALS and that vascular endothelial growth factor (VEGF) has a neuroprotective function in ALS mouse models. We evaluated how adenosine (A1R and A2AR) and VEGF (VEGFA, VEGFB, VEGFR-1 and VEGFR-2) system markers are altered in the cortex and spinal cord of pre-symptomatic and symptomatic SOD1G93A mice. We then assessed if/how chronic treatment of SOD1G93A mice with a widely consumed adenosine receptor antagonist, caffeine, modulates VEGF system and/or the levels of Brain-derived Neurotrophic Factor (BDNF), known to be under control of A2AR. We found out decreases in A1R and increases in A2AR levels even before disease onset. Concerning the VEGF system, we detected increases of VEGFB and VEGFR-2 levels in the spinal cord at pre-symptomatic stage, which reverses at the symptomatic stage, and decreases of VEGFA levels in the cortex, in very late disease states. Chronic treatment with caffeine rescued cortical A1R levels in SOD1G93A mice, bringing them to control levels, while rendering VEGF signaling nearly unaffected. In contrast, BDNF levels were significantly affected in SOD1G93A mice treated with caffeine, being decreased in the cortex and increased in spinal the cord. Altogether, these findings suggest an early dysfunction of the adenosinergic system in ALS and highlights the possibility that the negative influence of caffeine previously reported in ALS animal models results from interference with BDNF rather than with the VEGF signaling molecules.info:eu-repo/semantics/publishedVersio

    Latent space transformers for generalizing deep networks

    Get PDF
    Sharing information between deep networks is not a simple task nowadays. In a traditional approach, researchers change and train layers at the end of a pretrained deep network while the other layers remain the same to adapt it to their purposes or develop a new deep network. In this paper, we propose a novel concept for interoperability in deep networks. Generalizing such networks’ usability will facilitate the creation of new hybrid models promoting innovation and disruptive use cases for deep networks in the fifth generation of wireless communications (5G) networks and increasing the accessibility, usability, and affordability for these products. The main idea is to use standard latent space transformation to share information between such networks. First, each deep network should be split into two parts by creators. After that, they should provide access to standard latent space. As each deep network should do that, we suggest the standard for the procedure. By adding the latent space, we can combine two deep networks using the latent transformer block, the only block that needs to train while connecting different pretrained deep networks. The results from the combination create a new network with a unique ability. This paper contributes to a concept related to the generalization of deep networks using latent transformers, optimizing the utilization of the edge and cloud in 5G telecommunication, controlling load balancing, saving bandwidth, and decreasing the latency caused by cumbersome computations. We provide a review of the current standardization associated with deep networks and Artificial Intelligence in general. Lastly, we present some use cases in 5G supporting the proposed concept.info:eu-repo/semantics/acceptedVersio

    Ambipolar carrier diffusion in In0:53Ga0:47As single quantum wells

    Get PDF
    The microluminescence surface scan technique (MSST) has been used to investigate photocarrier diffusion in undoped In0:53Ga0:47As - InP single quantum well (QW), in the temperature (T) range from 15 K to 295 K. Narrowing of the photoluminescence (PL) spatial profile is observed as the temperature is lowered, indicating reduction of the photocarrier diffusion length upon cooling. It was found that the width of the PL spatial profile follows a linear function of temperature, but a change in slope by a factor of 2.6 is observed at about 200 K, indicating a change of the dominant carrier scattering mechanism. In the temperature range of 15 K to 200 K, the ambipolar photocarrier diffusion mechanism seems to be correlated to impurity states thermally activated
    corecore