303 research outputs found

    A Simple Bioluminescent Method for Measuring D-Amino Acid Oxidase Activity

    Full text link
    D-Amino acid oxidase (DAO) plays important roles in regulating D-amino acid neurotransmitters and was recently identified as a key enzyme integral to hydrogen sulfide production from D-Cys. We report here the development of a simple biocompatible, bioluminescent method for measuring DAO activity based on the highly selective condensation of D-Cys with 6-hydroxy-2-cyanobenzothiazole (CBT-OH) to form D-luciferin

    Design and Construction of Absorption Cells for Precision Radial Velocities in the K Band using Methane Isotopologues

    Get PDF
    We present a method to optimize absorption cells for precise wavelength calibration in the near-infrared. We apply it to design and optimize methane isotopologue cells for precision radial velocity measurements in the K band. We also describe the construction and installation of two such cells for the CSHELL spectrograph at NASA's IRTF. We have obtained their high-resolution laboratory spectra, which we can then use in precision radial velocity measurements and which can also have other applications. In terms of obtainable RV precision methane should out-perform other proposed cells, such as the ammonia cell (14^{14}NH3_{3}) recently demonstrated on CRIRES/VLT. The laboratory spectra of Ammonia and the Methane cells show strong absorption features in the H band that could also be exploited for precision Doppler measurements. We present spectra and preliminary radial velocity measurements obtained during our first-light run. These initial results show that a precision down to 20-30 m s−1^{-1} can be obtained using a wavelength interval of only 5 nm in the K band and S/N∼\sim150. This supports the prediction that a precision down to a few m s−1^{-1} can be achieved on late M dwarfs using the new generation of NIR spectrographs, thus enabling the detection of terrestrial planets in their habitable zones. Doppler measurements in the NIR can also be used to mitigate the radial velocity jitter due to stellar activity enabling more efficient surveys on young active stars.Comment: accepted PASP, Apr 2012 (in press). Preprint version with 36 pages, 9 Figures, 2 Table

    Effects of Dietary Nitrate Supplementation on Performance and Muscle Oxygenation during Resistance Exercise in Men

    Get PDF
    The purpose of the current study was to assess the effects of acute and short-term nitrate (NO3−)-rich beetroot juice (BR) supplementation on performance outcomes and muscle oxygenation during bench press and back squat exercise. Fourteen recreationally active males were assigned in a randomized, double-blind, crossover design to supplement for 4 days in two conditions: (1) NO3−-depleted beetroot juice (PL; 0.10 mmol NO3− per day) and (2) BR (11.8 mmol NO3− per day). On days 1 and 4 of the supplementation periods, participants completed 2 sets of 2 × 70%1RM interspersed by 2 min of recovery, followed by one set of repetitions-to-failure (RTF) at 60%1RM for the determination of muscular power, velocity, and endurance. Quadriceps and pectoralis major tissue saturation index (TSI) were measured throughout exercise. Plasma [NO3−] and nitrite ([NO2−]) were higher after 1 and 4 days of supplementation with BR compared to PL (p \u3c 0.05). Quadriceps and pectoralis major TSI were not different between conditions (p \u3e 0.05). The number of RTF in bench press was 5% greater after acute BR ingestion compared to PL (PL: 23 ± 4 vs. BR: 24 ± 5, p \u3c 0.05). There were no differences between BR and PL for RTF for back squat or power and velocity for back squat or bench press (p \u3e 0.05). These data improve understanding on the ergogenic potential of BR supplementation during resistance exercise

    Ampullary cancers harbor ELF3 tumor suppressor gene mutations and exhibit frequent WNT dysregulation

    Get PDF
    The ampulla of Vater is a complex cellular environment from which adenocarcinomas arise to form a group of histopathologically heterogenous tumors. To evaluate the molecular features of these tumors, 98 ampullary adenocarcinomas were evaluated and compared to 44 distal bile duct and 18 duodenal adenocarcinomas. Genomic analyses revealed mutations in the WNT signaling pathway among half of the patients and in all three adenocarcinomas irrespective of their origin and histological morphology. These tumors were characterized by a high frequency of inactivating mutations of ELF3, a high rate of microsatellite instability, and common focal deletions and amplifications, suggesting common attributes in the molecular pathogenesis are at play in these tumors. The high frequency of WNT pathway activating mutation, coupled with small-molecule inhibitors of β-catenin in clinical trials, suggests future treatment decisions for these patients may be guided by genomic analysis

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    Full text link
    The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Intercomparison of Small Unmanned Aircraft System (sUAS) Measurements for Atmospheric Science During the LAPSE-RATE Campaign

    Get PDF
    Small unmanned aircraft systems (sUAS) are rapidly transforming atmospheric research. With the advancement of the development and application of these systems, improving knowledge of best practices for accurate measurement is critical for achieving scientific goals. We present results from an intercomparison of atmospheric measurement data from the Lower Atmospheric Process Studies at Elevation—a Remotely piloted Aircraft Team Experiment (LAPSE-RATE) field campaign. We evaluate a total of 38 individual sUAS with 23 unique sensor and platform configurations using a meteorological tower for reference measurements. We assess precision, bias, and time response of sUAS measurements of temperature, humidity, pressure, wind speed, and wind direction. Most sUAS measurements show broad agreement with the reference, particularly temperature and wind speed, with mean value differences of 1.6 ± 2.6 °C and 0.22 ± 0.59 m/s for all sUAS, respectively. sUAS platform and sensor configurations were found to contribute significantly to measurement accuracy. Sensor configurations, which included proper aspiration and radiation shielding of sensors, were found to provide the most accurate thermodynamic measurements (temperature and relative humidity), whereas sonic anemometers on multirotor platforms provided the most accurate wind measurements (horizontal speed and direction). We contribute both a characterization and assessment of sUAS for measuring atmospheric parameters, and identify important challenges and opportunities for improving scientific measurements with sUAS

    MYC activation cooperates with Vhl and Ink4a/Arf loss to induce clear cell renal cell carcinoma

    Get PDF
    Renal carcinoma is a common and aggressive malignancy whose histopathogenesis is incompletely understood and that is largely resistant to cytotoxic chemotherapy. We present two mouse models of kidney cancer that recapitulate the genomic alterations found in human papillary (pRCC) and clear cell RCC (ccRCC), the most common RCC subtypes. MYC activation results in highly penetrant pRCC tumours (MYC), while MYC activation, when combined with Vhl and Cdkn2a (Ink4a/Arf) deletion (VIM), produce kidney tumours that approximate human ccRCC. RNAseq of the mouse tumours demonstrate that MYC tumours resemble Type 2 pRCC, which are known to harbour MYC activation. Furthermore, VIM tumours more closely simulate human ccRCC. Based on their high penetrance, short latency, and histologic fidelity, these models of papillary and clear cell RCC should be significant contributions to the field of kidney cancer research
    • …
    corecore