37 research outputs found

    Interviews with Irish healthcare workers from different disciplines about palliative care for people with Parkinson’s disease: a definite role but uncertainty around terminology and timing

    Get PDF
    Background: An integrated palliative care approach is recommended in all life-limiting diseases, including Parkinson’s disease (PD). However research shows that people with PD have unmet palliative care needs. The study aimed to explore multidisciplinary healthcare workers’ (HCWs) views on palliative care for people with PD, identifying perceived barriers and facilitators. Methods: A qualitative design was used; data was analysed using Thematic Analysis. Semi-structured interviews were conducted with 30 HCWs, working either with people with PD or in a palliative care setting in Ireland. Results: A number of perceived barriers were evident helping to account for the previously reported unmet palliative care needs in PD. A lack of education about PD and palliative care meant that HCWs were unsure of the appropriateness of referral, and patients and carers weren’t equipped with information to seek palliative care. A lack of communication between PD and palliative care specialists was seen to impede collaboration between the disciplines. Uncertainty about the timing of palliative care meant that it was often not introduced until a crisis point, despite the recognised need for early planning due to increased prevalence of dementia. Conclusions: Most HCWs recognised a need for palliative care for people with PD; however several barriers to implementing a palliative care approach in this population need to be addressed. Implications for clinical practice and policy include the need for an integrated model of care, and education for all HCWs, patients, carers, and the public on both the nature of advanced PD, and the potential of palliative care in support of patients and their family members

    Future research directions on the "elusive" white shark

    Get PDF
    White sharks, Carcharodon carcharias, are often described as elusive, with little information available due to the logistical difficulties of studying large marine predators that make long-distance migrations across ocean basins. Increased understanding of aggregation patterns, combined with recent advances in technology have, however, facilitated a new breadth of studies revealing fresh insights into the biology and ecology of white sharks. Although we may no longer be able to refer to the white shark as a little-known, elusive species, there remain numerous key questions that warrant investigation and research focus. Although white sharks have separate populations, they seemingly share similar biological and ecological traits across their global distribution. Yet, white shark’s behavior and migratory patterns can widely differ, which makes formalizing similarities across its distribution challenging. Prioritization of research questions is important to maximize limited resources because white sharks are naturally low in abundance and play important regulatory roles in the ecosystem. Here, we consulted 43 white shark experts to identify these issues. The questions listed and developed here provide a global road map for future research on white sharks to advance progress toward key goals that are informed by the needs of the research community and resource managers

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care

    Canonical BMP–Smad Signalling Promotes Neurite Growth in Rat Midbrain Dopaminergic Neurons

    Full text link
    Ventral midbrain (VM) dopaminergic (DA) neurons project to the dorsal striatum via the nigrostriatal pathway to regulate voluntary movements, and their loss leads to the motor dysfunction seen in Parkinson’s disease (PD). Despite recent progress in the understanding of VM DA neurogenesis, the factors regulating nigrostriatal pathway development remain largely unknown. The bone morphogenetic protein (BMP) family regulates neurite growth in the developing nervous system and may contribute to nigrostriatal pathway development. Two related members of this family, BMP2 and growth differentiation factor (GDF)5, have neurotrophic effects, including promotion of neurite growth, on cultured VM DA neurons. However, the molecular mechanisms regulating their effects on DA neurons are unknown. By characterising the temporal expression profiles of endogenous BMP receptors (BMPRs) in the developing and adult rat VM and striatum, this study identified BMP2 and GDF5 as potential regulators of nigrostriatal pathway development. Furthermore, through the use of noggin, dorsomorphin and BMPR/Smad plasmids, this study demonstrated that GDF5- and BMP2-induced neurite outgrowth from cultured VM DA neurons is dependent on BMP type I receptor activation of the Smad 1/5/8 signalling pathway

    Evaluation of test-day milk somatic cell count to predict intramammary  infection in late lactation grazing dairy cows

    No full text
    The use of selective dry cow antimicrobial therapy requires precisely differentiating cows with an intramammary infection (IMI) from uninfected cows close to drying-off to enable treatment allocation. Milk somatic cell count (SCC) is an indicator of an inflammatory response in the mammary gland and is usually associated with IMI. However, SCC can also be influenced by cow-level variables such as milk yield, lactation number, and stage of lactation. In recent years, predictive algorithms have been developed to differentiate cows with IMI from cows without IMI based on SCC data. The objective of this observational study was to explore the association between SCC and subclinical IMI, taking cognizance of cow-level predictors on Irish seasonal spring calving, pasture-based systems. Additionally, the optimal test-day SCC cut-point (maximized sensitivity and specificity) for IMI diagnosis was determined. A total of 2,074 cows across 21 spring calving dairy herds with an average monthly milk weighted bulk tank SCC of ≤200,000 cells/mL were enrolled in the study. Quarter-level milk sampling was carried out on all cows in late lactation (interquartile range = 240–261 d in milk) for bacteriological culturing. Bacteriological results were used to define cows with IMI when ≥1 quarter sample resulted in bacterial growth. Cow-level test-day SCC records were provided by the herd owners. The ability of the average, maximum, and last test-day SCC to predict infection were compared using receiver operator curves. Predictive logistic regression models tested included parity (primiparous or multiparous), yield at last test-day, and a standardized count of high SCC test-days. In total, 18.7% of cows were classified as having an IMI, with first-parity cows having a higher proportion of IMI (29.3%) compared with multiparous cows (16.1%). Staphylococcus aureus accounted for the majority of these infections. The last test-day SCC was the best predictor of infection with the highest area under the curve. The inclusions of parity, yield at last test-day, and a standardized count of high SCC test-days as predictors did not significantly improve the ability of last test-day SCC to predict IMI. The cut-point for last test-day SCC that maximized sensitivity and specificity was 64,975 cells/mL. This study indicates that in Irish seasonal pasture-based dairy herds with low bulk tank SCC, the last test-day SCC (interquartile range days in milk = 221–240) is the best predictor of IMI in late lactation.</p

    Integrative Analysis of PRKAG2 Cardiomyopathy iPS and Microtissue Models Identifies AMPK as a Regulator of Metabolism, Survival, and Fibrosis.

    No full text
    AMP-activated protein kinase (AMPK) is a metabolic enzyme that can be activated by nutrient stress or genetic mutations. Missense mutations in the regulatory subunit, PRKAG2, activate AMPK and cause left ventricular hypertrophy, glycogen accumulation, and ventricular pre-excitation. Using human iPS cell models combined with three-dimensional cardiac microtissues, we show that activating PRKAG2 mutations increase microtissue twitch force by enhancing myocyte survival. Integrating RNA sequencing with metabolomics, PRKAG2 mutations that activate AMPK remodeled global metabolism by regulating RNA transcripts to favor glycogen storage and oxidative metabolism instead of glycolysis. As in patients with PRKAG2 cardiomyopathy, iPS cell and mouse models are protected from cardiac fibrosis, and we define a crosstalk between AMPK and post-transcriptional regulation of TGFβ isoform signaling that has implications in fibrotic forms of cardiomyopathy. Our results establish critical connections among metabolic sensing, myocyte survival, and TGFβ signaling. Cell Rep 2016 Dec 20; 17(12):3292-3304
    corecore