165 research outputs found

    Mind the gap: Can a professional development programme build a university’s public engagement community?

    Get PDF
    A number of ‘gaps’ may be present within public engagement with research – disparity of skills, priorities and knowledge between research staff and engagement practitioners, as well as differences between institutional ambition and departmental reality. Such gaps are often perceived as problems – deficits to be addressed through training and culture change initiatives. The design and delivery of Imperial College London’s Engagement Academy with 12 members of research, teaching and professional services staff sought to explore and work across such gaps. We propose that these areas of disconnect within and across universities may be challenging, but they may also be structurally necessary, and potentially even a source of rich public engagement

    A new method for atmospheric detection of the CH3O2 radical

    Get PDF
    A new method for measurement of the methyl peroxy (CH3O2) radical has been developed using the conversion of CH3O2 into CH3O by excess NO with subsequent detection of CH3O by fluorescence assay by gas expansion (FAGE) with laser excitation at ca. 298 nm. The method can also directly detect CH3O, when no nitric oxide is added. Laboratory calibrations were performed to characterise the FAGE instrument sensitivity using the conventional radical source employed in OH calibration with conversion of a known concentration of OH into CH3O2 via reaction with CH4 in the presence of O2. Detection limits of 3.8 × 108 and 3.0 × 108 molecule cm−3 were determined for CH3O2 and CH3O respectively for a signal-to-noise ratio of 2 and 5 min averaging time. Averaging over 1 h reduces the detection limit for CH3O2 to 1.1 × 108 molecule cm−3, which is comparable to atmospheric concentrations. The kinetics of the second-order decay of CH3O2 via its self-reaction were observed in HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry) at 295 K and 1 bar and used as an alternative method of calibration to obtain a calibration constant with overlapping error limits at the 1σ level with the result of the conventional method of calibration. The overall uncertainties of the two methods of calibrations are similar – 15 % for the kinetic method and 17 % for the conventional method – and are discussed in detail. The capability to quantitatively measure CH3O in chamber experiments is demonstrated via observation in HIRAC of CH3O formed as a product of the CH3O2 self-reaction

    Equity in informal science learning: a practice-research brief

    Get PDF
    This briefi ng paper reports fi ndings from the Youth Access & Equity in Informal Science Learning (ISL) project, a UK-US researcher-practitioner partnership funded by the Science Learning+ scheme. Our project focuses on young people aged 11-14 primarily from under-served and non-dominant communities and includes researchers and practitioners from a range of ISL settings: designed spaces (eg museums, zoos), community-based (eg after school clubs) and everyday science spaces (eg science media)

    Author Response

    Get PDF

    Youth equity pathways in informal science learning

    Get PDF
    This infographic reports findings from the Youth Access & Equity in Informal Science Learning (ISL) project, a UK-US researcher-practitioner partnership funded by the Science Learning+ Phase 1 scheme. Our project focuses on young people aged 11-14 primarily from under-served and non-dominant communities and includes researchers and practitioners from a range of ISL settings: designed spaces (eg museums, zoos), community-based (eg afterschool clubs) and everyday science spaces (eg science media)

    Pathways in informal science learning: a practice-research brief

    Get PDF
    This briefing paper reports findings from the Youth Access & Equity in Informal Science Learning (ISL) project, a UK-US researcher-practitioner partnership funded by the Science Learning+ Phase 1 scheme. Our project focuses on young people aged 11-14 primarily from under-served and non-dominant communities and includes researchers and practitioners from a range of ISL settings, including designed spaces (eg museums, zoos), community based (eg afterschool clubs) and everyday science spaces (eg science media)

    Science Learning+ Youth Equity Pathways in Informal Science Learning: Survey findings

    Get PDF
    This document presents an overview of the quantitative survey data findings from the SL+ Equity Pathways in Informal Science Learning project. Further qualitative analysis on some of the open response data is yet to be completed. Findings are grouped into four areas: about the individuals taking part in the survey; their definitions and understanding of equity and related terms; their current equity practice; and their practices around equity work including reading, talking with colleagues and evaluation

    Time-Resolved Measurements and Master Equation Modelling of the Unimolecular Decomposition of CH3OCH2

    Get PDF
    The rate coefficient for the unimolecular decomposition of CH3OCH2,k(1), has been measured in time-resolved experiments by monitoring the HCHO product. CH3OCH2 was rapidly and cleanly generated by 248 nm excimer photolysis of oxalyl chloride, (ClCO)(2), in an excess of CH3OCH3, and an excimer pumped dye laser tuned to 353.16 nm was used to probe HCHO via laser induced fluorescence. k(1)(T,p) was measured over the ranges: 573-673 K and 0.1-4.3 x 10(18) molecule cm(-3) with a helium bath gas. In addition, some experiments were carried out with nitrogen as the bath gas. Ab initio calculations on CH3OCH2 decomposition were carried out and a transition-state for decomposition to CH3 and H2CO was identified. This information was used in a master equation rate calculation, using the MESMER code, where the zero-point-energy corrected barrier to reaction, Delta E-0,E-1, and the energy transfer parameters, x T-n, were the adjusted parameters to best fit the experimental data, with helium as the buffer gas. The data were combined with earlier measurements by Loucks and Laidler (Can J. Chem. 1967, 45, 2767), with dimethyl ether as the third body, reinterpreted using current literature for the rate coefficient for recombination of CH3OCH2. This analysis returned Delta E-0,E-1 = (112.3 +/- 0.6) kJ mol(-1), and leads to k(1)(infinity)(T) = 2.9 x 10(12) (T/300)(2)(.5) exp(-106.8 kJ mol(-1)/RT). Using this model, limited experiments with nitrogen as the bath gas allowed N-2 energy transfer parameters to be identified and then further MESMER simulations were carried out, where N-2 was the buffer gas, to generate k(1)(T,p) over a wide range of conditions: 300-1000 K and N-2 = 10(12) -10(25) molecule cm(-3). The resulting k(1)(T,p) has been parameterized using a Troe-expression, so that they can be readily be incorporated into combustion models. In addition, k(1)(T,p) has been parametrized using PLOG for the buffer gases, He, CH3OCH3 and N-2.Peer reviewe

    OH yields from the CH3CO+O-2 reaction using an internal standard

    Get PDF
    Laser flash photolysis of CH3C(O)OH at 248 nm was used to create equal zero time yields of CH3CO and OH. The absolute OH yield from the CH3CO + O2 (+M) reaction was determined by following the OH temporal profile using the zero time OH concentration as an internal standard. The OH yield from CH3CO + O2 (+M) was observed to decrease with increasing pressure with an extrapolated zero pressure yield close to unity (1.1 ± 0.2, quoted uncertainties correspond to 95% confidence limits). The results are in quantitative agreement with those obtained from 248 nm acetone photolysis in the presence of O2

    A new method for atmospheric detection of the CH₃O₂ radical

    Get PDF
    A new method for measurement of the methyl peroxy (CH₃O₂ ) radical has been developed using the conversion of CH₃O₂ into CH₃O by excess NO with subsequent detection of CH₃O by fluorescence assay by gas expansion (FAGE) with laser excitation at ca. 298 nm. The method can also directly detect CH₃O, when no nitric oxide is added. Laboratory calibrations were performed to characterise the FAGE instrument sensitivity using the conventional radical source employed in OH calibration with conversion of a known concentration of OH into CH₃O₂ via reaction with CH₄ / O₂. Detection limits of 3.8 × 10⁸ molecule cm−³ and 3.0 × 10⁸ molecule cm−³ were determined for CH₃O₂ and CH₃O, respectively for a signal-to-noise ratio of 2 and 5 min averaging time. Averaging over 1 hour reduces the detection limit for CH₃O₂ to 1.1 × 10⁸ molecule cm−³ comparable to atmospheric concentrations. The kinetics of the second–order decay of CH₃O₂ via its self–reaction were observed in HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry) at 295 K and 1  bar and used as an alternative method of calibration to obtain a calibration constant with overlapping error limits at the 1σ level with the result of the conventional method of calibration. The overall uncertainties of the two methods of calibrations are similar: 15 % for the kinetic method and 17 % for the conventional method and are discussed in detail. The capability to quantitatively measure CH₃O in chamber experiments is demonstrated via observation in HIRAC of CH₃O formed as a product of the CH₃O₂ self–reaction
    corecore