910 research outputs found

    Evolution of spectral function in a doped Mott insulator : surface vs. bulk contributions

    Get PDF
    We study the evolution of the spectral function with progressive hole doping in a Mott insulator, La1xCaxVO3La_{1-x}Ca_xVO_3 with xx = 0.0 - 0.5. The spectral features indicate a bulk-to-surface metal-insulator transition in this system. Doping dependent changes in the bulk electronic structure are shown to be incompatible with existing theoretical predictions. An empirical description based on the single parameter, U/WU/W, is shown to describe consistently the spectral evolution.Comment: Revtex, 4 pages, 3 postscript figures. To appear in Phys. Rev. Let

    Spin Motion in Electron Transmission through Ultrathin Ferromagnetic Films Accessed by Photoelectron Spectroscopy

    Full text link
    Ab initio and model calculations demonstrate that the spin motion of electrons transmitted through ferromagnetic films can be analyzed in detail by means of angle- and spin-resolved core-level photoelectron spectroscopy. The spin motion appears as precession of the photoelectron spin polarization around and as relaxation towards the magnetization direction. In a systematic study for ultrathin Fe films on Pd(001) we elucidate its dependence on the Fe film thickness and on the Fe electronic structure. In addition to elastic and inelastic scattering, the effect of band gaps on the spin motion is addressed in particular.Comment: 4 pages, 5 figure

    Household catastrophic healthcare expenditure and impoverishment due to rotavirus gastroenteritis requiring hospitalization in Malaysia.

    Get PDF
    BACKGROUND: While healthcare costs for rotavirus gastroenteritis requiring hospitalization may be burdensome on households in Malaysia, exploration on the distribution and catastrophic impact of these expenses on households are lacking. OBJECTIVES: We assessed the economic burden, levels and distribution of catastrophic healthcare expenditure, the poverty impact on households and inequities related to healthcare payments for acute gastroenteritis requiring hospitalization in Malaysia. METHODS: A two-year prospective, hospital-based study was conducted from 2008 to 2010 in an urban (Kuala Lumpur) and rural (Kuala Terengganu) setting in Malaysia. All children under the age of 5 years admitted for acute gastroenteritis were included. Patients were screened for rotavirus and information on healthcare expenditure was obtained. RESULTS: Of the 658 stool samples collected at both centers, 248 (38%) were positive for rotavirus. Direct and indirect costs incurred were significantly higher in Kuala Lumpur compared with Kuala Terengganu (US222Vs.US222 Vs. US45; p<0.001). The mean direct and indirect costs for rotavirus gastroenteritis consisted 20% of monthly household income in Kuala Lumpur, as compared with only 5% in Kuala Terengganu. Direct medical costs paid out-of-pocket caused 141 (33%) households in Kuala Lumpur to experience catastrophic expenditure and 11 (3%) households to incur poverty. However in Kuala Terengganu, only one household (0.5%) experienced catastrophic healthcare expenditure and none were impoverished. The lowest income quintile in Kuala Lumpur was more likely to experience catastrophic payments compared to the highest quintile (87% vs 8%). The concentration index for out-of-pocket healthcare payments was closer to zero at Kuala Lumpur (0.03) than at Kuala Terengganu (0.24). CONCLUSIONS: While urban households were wealthier, healthcare expenditure due to gastroenteritis had more catastrophic and poverty impact on the urban poor. Universal rotavirus vaccination would reduce both disease burden and health inequities in Malaysia

    Fermi-surface reconstruction involving two Van Hove singularities across the antiferromagnetic transition in BaFe2As2

    Full text link
    We report an angle-resolved photoemission study of BaFe2As2, a parent compound of iron-based superconductors. Low-energy tunable excitation photons have allowed the first observation of a saddle-point singularity at the Z point, as well as the Gamma point. With antiferromagnetic ordering, both of these two van Hove singularities come down below the Fermi energy, leading to a topological change in the innermost Fermi surface around the kz axis from cylindrical to tear-shaped, as expected from first-principles calculation. These singularities may provide an additional instability for the Fermi surface of the superconductors derived from BaFe2As2.Comment: 14 pages, 4 figures, 1 tabl

    Single-cell analysis: visualizing pharmaceutical and metabolite uptake in cells with label-free 3D mass spectrometry imaging

    Get PDF
    Detecting metabolites and parent compound within a cell type is now a priority for pharmaceutical development. In this context, three-dimensional secondary ion mass spectrometry (SIMS) imaging was used to investigate the cellular uptake of the antiarrhythmic agent amiodarone, a phospholipidosis-inducing pharmaceutical compound. The high lateral resolution and 3D imaging capabilities of SIMS combined with the multiplex capabilities of ToF mass spectrometric detection allows for the visualization of pharmaceutical compound and metabolites in single cells. The intact, unlabeled drug compound was successfully detected at therapeutic dosages in macrophages (cell line: NR8383). Chemical information from endogenous biomolecules was used to correlate drug distributions with morphological features. From this spatial analysis, amiodarone was detected throughout the cell with the majority of the compound found in the membrane and subsurface regions and absent in the nuclear regions. Similar results were obtained when the macrophages were doped with amiodarone metabolite, desethylamiodarone. The FWHM lateral resolution measured across an intracellular interface in a high lateral resolution ion images was approximately 550 nm. Overall, this approach provides the basis for studying cellular uptake of pharmaceutical compounds and their metabolites on the single cell level

    Opportunities and challenges for data physicalization

    Get PDF
    Physical representations of data have existed for thousands of years. Yet it is now that advances in digital fabrication, actuated tangible interfaces, and shape-changing displays are spurring an emerging area of research that we call Data Physicalization. It aims to help people explore, understand, and communicate data using computer-supported physical data representations. We call these representations physicalizations, analogously to visualizations -- their purely visual counterpart. In this article, we go beyond the focused research questions addressed so far by delineating the research area, synthesizing its open challenges and laying out a research agenda

    Antimony-doped graphene nanoplatelets

    Get PDF
    Heteroatom doping into the graphitic frameworks have been intensively studied for the development of metal-free electrocatalysts. However, the choice of heteroatoms is limited to non-metallic elements and heteroatom-doped graphitic materials do not satisfy commercial demands in terms of cost and stability. Here we realize doping semimetal antimony (Sb) at the edges of graphene nanoplatelets (GnPs) via a simple mechanochemical reaction between pristine graphite and solid Sb. The covalent bonding of the metalloid Sb with the graphitic carbon is visualized using atomic-resolution transmission electron microscopy. The Sb-doped GnPs display zero loss of electrocatalytic activity for oxygen reduction reaction even after 100,000 cycles. Density functional theory calculations indicate that the multiple oxidation states (Sb3+ and Sb5+) of Sb are responsible for the unusual electrochemical stability. Sb-doped GnPs may provide new insights and practical methods for designing stable carbon-based electrocatalystsclose0

    Corrosion behaviour of porous Ti intended for biomedical applications

    Get PDF
    Porous Ti implants are being developed inorder to reduce the biomechanical mismatch between theimplant and the bone, as well as increasing the osseointegrationby improving the bone in-growth. Most of the focusin the literature has been on the structural, biological andmechanical characterization of porous Ti whereas there islimited information on the electrochemical characterization.Therefore, the present work aims to study the corrosionbehaviour of porous Ti having 30 and 50 % ofnominal porosity, produced by powder metallurgy routeusing the space holder technique. The percentage, size anddistribution of the pores were determined by image analysis.Electrochemical tests consisting of potentiodynamicpolarization and electrochemical impedance spectroscopywere performed in 9 g/L NaCl solution at body temperature.Electrochemical studies revealed that samples presenteda less stable oxide film at increased porosity, morespecifically, the complex geometry and the interconnectivityof the pores resulted in formation of less protectiveoxide film in the pores.This study was supported by FCT with the reference project UID/EEA/04436/2013, by FEDER funds through the COMPETE 2020 – Programa Operacional Competitividade e Internacionalizac¸a˜o (POCI) with the reference project POCI-01-0145- FEDER-006941, Programa de Acc¸o˜es Universita´rias Integradas LusoFrancesas’ (PAUILF TC-12_14), and The Calouste Gulbenkian Foundation through ‘‘Programa de Mobilidade Acade´mica para Professores’’. The authors would also like to acknowledge Prof. Ana Senos (University of Aveiro) and Prof. Jose´ Carlos Teixeira (University of Minho) for the provision of the characterization facilities.info:eu-repo/semantics/publishedVersio
    corecore