1,185 research outputs found
An improved method of supercharged transposed latissimus dorsi flap with the skin paddle for the management of a complicated lumbosacral defect
OBJECTIVE: Treatment of nonhealing wounds of lower back often poses a powerful challenge. We present one of the first
report of treatment of a lumbosacral defect with a supercharged latissimus dorsi flap with the skin paddle.
CASE REPORT: We report a case of a 59 yearold man with myeloma of the sacral spine who underwent radiotherapy and chemotherapy and subsequently, laminectomies and placement of hardware for ongoing paresis and spine instability. Then, he developed an open wound and osteomyelitis of the spine with culture positive tuberculous granulomas. After multiple surgical debridement, he presented to our service and was treated with a single stage debridement followed by the performance of a latissimus dorsi musculocutaneous flap based on paraspinal perforators and supercharged.
RESULTS: This solution, allowed for augmentation of blood flow to the muscle with the inferior gluteal artery, provided coverage of the defect resistant to the pressure, and simplified post-operative management of the patient.
CONCLUSIONS: Alternative treatment options, including free tissue transfer, posed difficulties in finding suitable recipient vessels near the defect, in inserting the flap so as to restore its original length without compromising blood flow, and in postoperative care of the patient. Treatment of a lumbosacral defect with a supercharged latissimus dorsi flap with the skin paddle may represent a milestone procedure for complicated lower spine wounds
Low mass loss rates in O-type stars: Spectral signatures of dense clumps in the wind of two Galactic O4 stars
We have analyzed the far-UV spectrum of two Galactic O4 stars, the O4If+
supergiant HD190429A and the O4V((f)) dwarf HD96715, using archival FUSE and
IUE data. We have conducted a quantitative analysis based on the two NLTE model
atmosphere and wind codes, TLUSTY and CMFGEN. We have derived the stellar and
wind parameters and the surface composition of the two stars. The surface of
HD190429A has a composition typical of an evolved O supergiant (N-rich, C and
O-poor), while HD96715 exhibits surface N enhancement similar to the enrichment
found in SMC O dwarfs and attributed to rotationally-induced mixing. We find
that homogeneous wind models could not match the observed profile of O V1371
and require very low phosphorus abundance to fit the P V1118-1128 resonance
lines. However, we are able to match the O V and P V lines using clumped wind
models. We find that N IV1718 is also sensitive to wind clumping. For both
stars, we have calculated clumped wind models that match well all these lines
from different species and that remain consistent with Halpha data. These fits
therefore provide a coherent and thus much stronger evidence of wind clumping
in O stars than earlier claims. We find that the wind of these two stars is
highly clumped, as expressed by very small volume filling factors, namely
f=0.04 for HD190429A and f=0.02 for HD96715. In agreement with our analysis of
SMC stars, clumping starts deep in the wind, just above the sonic point. The
most crucial consequence of our analysis is that the mass loss rates of O stars
need to be revised downward significantly, by a factor of 3 and more.
Accounting for wind clumping is essential when determining the wind properties
of O stars. Our study therefore calls for a fundamental revision in our
understanding of mass loss and of O-type star winds. (abridged)Comment: To appear in Astronomy & Astrophysics; 16 pages; accepted version
after minor revisio
Excited States of Proton-bound DNA/RNA Base Homo-dimers: Pyrimidines
We are presenting the electronic photo fragment spectra of the protonated
pyrimidine DNA bases homo-dimers. Only the thymine dimer exhibits a well
structured vibrational progression, while protonated monomer shows broad
vibrational bands. This shows that proton bonding can block some non radiative
processes present in the monomer.Comment: We acknowledge the use of the computing facility cluster GMPCS of the
LUMAT federation (FR LUMAT 2764
Quasielastic backscattering and barrier distributions for the 6, 7Li + 64Zn systems
Excitation functions of quasielastic scattering at backward angles were measured for the weakly bound 6Li and 7Li projectiles on a 64Zn target at energies around the Coulomb barrier. The corresponding barrier distributions were derived from the experimental cross sections. The experimental data were analyzed within the coupled-channel model using a double-folding potential as the bare potential. Inelastic excitations of the target, the 7Li first excited state, and 6Li, 7Li resonant state(s), corresponding to sequential breakup, were included in the calculations. The comparison between the data and coupled-channel predictions shows that the effects of channels not included in the calculations, such as direct breakup and transfers, are much larger for 6Li than for 7Li
The Discordance of Mass-Loss Estimates for Galactic O-Type Stars
We have determined accurate values of the product of the mass-loss rate and
the ion fraction of P^{4+}, Mdot q(P^{4+}), for a sample of 40 Galactic O-type
stars by fitting stellar-wind profiles to observations of the P V resonance
doublet obtained with FUSE, ORFEUS/BEFS, and Copernicus. When P^{4+} is the
dominant ion in the wind, Mdot q(P^{4+}) approximates the mass-loss rate to
within a factor of 2. Theory predicts that P^{4+} is the dominant ion in the
winds of O7-O9.7 stars, though an empirical estimator suggests that the range
from O4-O7 may be more appropriate. However, we find that the mass-loss rates
obtained from P V wind profiles are systematically smaller than those obtained
from fits to Halpha emission profiles or radio free-free emission by median
factors of about 130 (if P^{4+} is dominant between O7 and O9.7) or about 20
(if P^{4+} is dominant between O4 and O7). These discordant measurements can be
reconciled if the winds of O stars in the relevant temperature range are
strongly clumped on small spatial scales. We use a simplified two-component
model to investigate the volume filling factors of the denser regions. This
clumping implies that mass-loss rates determined from "density squared"
diagnostics have been systematically over-estimated by factors of 10 or more,
at least for a subset of O stars. Reductions in the mass-loss rates of this
size have important implications for the evolution of massive stars and
quantitative estimates of the feedback that hot-star winds provide to their
interstellar environments.Comment: 26 pages, 4 figures; accepted for publication in Ap
Ultramicronized palmitoylethanolamide rescues learning and memory impairments in a triple transgenic mouse model of Alzheimer's disease by exerting anti-inflammatory and neuroprotective effects
In an aging society, Alzheimer’s disease (AD) exerts an increasingly serious health and economic burden. Current treatments provide inadequate symptomatic relief as several distinct pathological processes are thought to underlie the decline of cognitive and neural function seen in AD. This suggests that the efficacy of treatment requires a multitargeted approach. In this context, palmitoylethanolamide (PEA) provides a novel potential adjunct therapy that can be incorporated into a multitargeted treatment strategy. We used young (6-month-old) and adult (12-month-old) 3×Tg-AD mice that received ultramicronized PEA (um-PEA) for 3 months via a subcutaneous delivery system. Mice were tested with a range of cognitive and noncognitive tasks, scanned with magnetic resonance imaging/magnetic resonance spectroscopy (MRI/MRS), and neurochemical release was assessed by microdialysis. Potential neuropathological mechanisms were assessed postmortem by western blot, reverse transcription–polymerase chain reaction (RT-PCR), and immunofluorescence. Our data demonstrate that um-PEA improves learning and memory, and ameliorates both the depressive and anhedonia-like phenotype of 3×Tg-AD mice. Moreover, it reduces Aβ formation, the phosphorylation of tau proteins, and promotes neuronal survival in the CA1 subregion of the hippocampus. Finally, um-PEA normalizes astrocytic function, rebalances glutamatergic transmission, and restrains neuroinflammation. The efficacy of um-PEA is particularly potent in younger mice, suggesting its potential as an early treatment. These data demonstrate that um-PEA is a novel and effective promising treatment for AD with the potential to be integrated into a multitargeted treatment strategy in combination with other drugs. Um-PEA is already registered for human use. This, in combination with our data, suggests the potential to rapidly proceed to clinical use
Bi-allelic JAM2 Variants Lead to Early-Onset Recessive Primary Familial Brain Calcification.
Primary familial brain calcification (PFBC) is a rare neurodegenerative disorder characterized by a combination of neurological, psychiatric, and cognitive decline associated with calcium deposition on brain imaging. To date, mutations in five genes have been linked to PFBC. However, more than 50% of individuals affected by PFBC have no molecular diagnosis. We report four unrelated families presenting with initial learning difficulties and seizures and later psychiatric symptoms, cerebellar ataxia, extrapyramidal signs, and extensive calcifications on brain imaging. Through a combination of homozygosity mapping and exome sequencing, we mapped this phenotype to chromosome 21q21.3 and identified bi-allelic variants in JAM2. JAM2 encodes for the junctional-adhesion-molecule-2, a key tight-junction protein in blood-brain-barrier permeability. We show that JAM2 variants lead to reduction of JAM2 mRNA expression and absence of JAM2 protein in patient's fibroblasts, consistent with a loss-of-function mechanism. We show that the human phenotype is replicated in the jam2 complete knockout mouse (jam2 KO). Furthermore, neuropathology of jam2 KO mouse showed prominent vacuolation in the cerebral cortex, thalamus, and cerebellum and particularly widespread vacuolation in the midbrain with reactive astrogliosis and neuronal density reduction. The regions of the human brain affected on neuroimaging are similar to the affected brain areas in the myorg PFBC null mouse. Along with JAM3 and OCLN, JAM2 is the third tight-junction gene in which bi-allelic variants are associated with brain calcification, suggesting that defective cell-to-cell adhesion and dysfunction of the movement of solutes through the paracellular spaces in the neurovascular unit is a key mechanism in CNS calcification
Highlights from the Pierre Auger Observatory
The Pierre Auger Observatory is the world's largest cosmic ray observatory.
Our current exposure reaches nearly 40,000 km str and provides us with an
unprecedented quality data set. The performance and stability of the detectors
and their enhancements are described. Data analyses have led to a number of
major breakthroughs. Among these we discuss the energy spectrum and the
searches for large-scale anisotropies. We present analyses of our X
data and show how it can be interpreted in terms of mass composition. We also
describe some new analyses that extract mass sensitive parameters from the 100%
duty cycle SD data. A coherent interpretation of all these recent results opens
new directions. The consequences regarding the cosmic ray composition and the
properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray
Conference, Rio de Janeiro 201
- …
