5 research outputs found

    Avoimen systeemin magmaattisten prosessien diagnosointi Magmakammiosimulaattorilla. Osa II: hivenalkuaineet ja isotoopit

    Get PDF
    The Magma Chamber Simulator (MCS) is a thermodynamic model that computes the phase, thermal, and compositional evolution of a multiphase–multicomponent system of a Fractionally Crystallizing resident body of magma (i.e., melt ± solids ± fluid), linked wallrock that may either be assimilated as Anatectic melts or wholesale as Stoped blocks, and multiple Recharge reservoirs (RnASnFC system, where n is the number of user-selected recharge events). MCS calculations occur in two stages; the first utilizes mass and energy balance to produce thermodynamically constrained major element and phase equilibria information for an RnASnFC system; this tool is informally called MCS-PhaseEQ, and is described in a companion paper (Bohrson et al. 2020). The second stage of modeling, called MCS-Traces, calculates the RASFC evolution of up to 48 trace elements and seven radiogenic and one stable isotopic system (Sr, Nd, Hf, 3xPb, Os, and O) for the resident melt. In addition, trace element concentrations are calculated for bulk residual wallrock and each solid (± fluid) phase in the cumulate reservoir and residual wallrock. Input consists of (1) initial trace element concentrations and isotope ratios for the parental melt, wallrock, and recharge magmas/stoped wallrock blocks and (2) solid-melt and solid–fluid partition coefficients (optional temperature-dependence) for stable phases in the resident magma and residual wallrock. Output can be easily read and processed from tabulated worksheets. We provide trace element and isotopic results for the same example cases (FC, R2FC, AFC, S2FC, and R2AFC) presented in the companion paper. These simulations show that recharge processes can be difficult to recognize based on trace element data alone unless there is an independent reference frame of successive recharge events or if serial recharge magmas are sufficiently distinct in composition relative to the parental magma or magmas on the fractionation trend. In contrast, assimilation of wallrock is likely to have a notable effect on incompatible trace element and isotopic compositions of the contaminated resident melt. The magnitude of these effects depends on several factors incorporated into both stages of MCS calculations (e.g., phase equilibria, trace element partitioning, style of assimilation, and geochemistry of the starting materials). Significantly, the effects of assimilation can be counterintuitive and very different from simple scenarios (e.g., bulk mixing of magma and wallrock) that do not take account phase equilibria. Considerable caution should be practiced in ruling out potential assimilation scenarios in natural systems based upon simple geochemical “rules of thumb”. The lack of simplistic responses to open-system processes underscores the need for thermodynamical RASFC models that take into account mass and energy conservation. MCS-Traces provides an unprecedented and detailed framework for utilizing thermodynamic constraints and element partitioning to document trace element and isotopic evolution of igneous systems. Continued development of the Magma Chamber Simulator will focus on easier accessibility and additional capabilities that will allow the tool to better reproduce the documented natural complexities of open-system magmatic processes.Peer reviewe

    Avoimen systeemin magmaattisten prosessien diagnosointi Magmakammiosimulaattorilla. Osa I: pääalkuaineet ja faasitasapainot

    Get PDF
    The Magma Chamber Simulator (MCS) is a thermodynamic tool for modeling the evolution of magmatic systems that are open with respect to assimilation of partial melts or stoped blocks, magma recharge + mixing, and fractional crystallization. MCS is available for both PC and Mac. In the MCS, the thermal, mass, and compositional evolution of a multicomponent-multiphase composite system of resident magma, wallrock, and recharge reservoirs is tracked by rigorous self-consistent thermodynamic modeling. A Recharge-Assimilation (Assimilated partial melt or Stoped blocks)-Fractional Crystallization (R(n)AS(n)FC;n(tot) The trace element and isotope MCS computational tool (MCS-Traces) is described in a separate contribution (part II).Peer reviewe

    Under the Surface: Pressure-Induced Planetary-Scale Waves, Volcanic Lightning, and Gaseous Clouds Caused by the Submarine Eruption of Hunga Tonga-Hunga Ha’apai Volcano Provide an Excellent Research Opportunity

    No full text
    We present a narrative of the eruptive events culminating in the cataclysmic 15 January 2022 eruption of Hunga Tonga-Hunga Ha’apai Volcano by synthesizing diverse preliminary seismic, volcanological, sound wave, and lightning data available within the first few weeks after the eruption occurred. The first hour of eruptive activity produced fast-propagating tsunami waves, long-period seismic waves, loud audible sound waves, infrasonic waves, exceptionally intense volcanic lightning and an unsteady volcanic plume that transiently reached—at 58 km—the Earth’s mesosphere. Energetic seismic signals were recorded worldwide and the globally stacked seismogram showed episodic seismic events within the most intense periods of phreatoplinian activity, and they correlated well with the infrasound pressure waveform recorded in Fiji. Gravity wave signals were strong enough to be observed over the entire planet in just the first few hours, with some circling the Earth multiple times subsequently. These large-amplitude, long-wavelength atmospheric disturbances come from the Earth’s atmosphere being forced by the magmatic mixture of tephra, melt and gasses emitted by the unsteady but quasi-continuous eruption from 0402±1—1800 UTC on 15 January 2022. Atmospheric forcing lasted much longer than rupturing from large earthquakes recorded on modern instruments, producing a type of shock wave that originated from the interaction between compressed air and ambient (wavy) sea surface. This scenario differs from conventional ideas of earthquake slip, landslides, or caldera collapse-generated tsunami waves because of the enormous (∼1000x) volumetric change due to the supercritical nature of volatiles associated with the hot, volatile-rich phreatoplinian plume. The time series of plume altitude can be translated to volumetric discharge and mass flow rate. For an eruption duration of ∼12 hours, the eruptive volume and mass are estimated at 1.9 km3 and ∼2,900 Tg, respectively, corresponding to a VEI of 5-6 for this event. The high frequency and intensity of lightning was enhanced by the production of fine ash due to magma—seawater interaction with concomitant high charge per unit mass and the high pre-eruptive concentration of dissolved volatiles. Analysis of lightning flash frequencies provides a rapid metric for plume activity and eruption magnitude. Many aspects of this eruption await further investigation by multidisciplinary teams. It represents a golden opportunity for fundamental research regarding the complex, non-linear behavior of high energetic volcanic eruptions and attendant phenomena, with critical implications for hazard mitigation, volcano forecasting, and first-response efforts in future disasters

    Under the Surface: Pressure-Induced Planetary-Scale Waves, Volcanic Lightning, and Gaseous Clouds Caused by the Submarine Eruption of Hunga Tonga-Hunga Ha’apai Volcano Provide an Excellent Research Opportunity

    No full text
    We present a narrative of the eruptive events culminating in the cataclysmic 15 January 2022 eruption of Hunga Tonga-Hunga Ha’apai Volcano by synthesizing diverse preliminary seismic, volcanological, sound wave, and lightning data available within the first few weeks after the eruption occurred. The first hour of eruptive activity produced fast-propagating tsunami waves, long-period seismic waves, loud audible sound waves, infrasonic waves, exceptionally intense volcanic lightning and an unsteady volcanic plume that transiently reached—at 58 km—the Earth’s mesosphere. Energetic seismic signals were recorded worldwide and the globally stacked seismogram showed episodic seismic events within the most intense periods of phreatoplinian activity, and they correlated well with the infrasound pressure waveform recorded in Fiji. Gravity wave signals were strong enough to be observed over the entire planet in just the first few hours, with some circling the Earth multiple times subsequently. These large-amplitude, long-wavelength atmospheric disturbances come from the Earth’s atmosphere being forced by the magmatic mixture of tephra, melt and gasses emitted by the unsteady but quasi-continuous eruption from 0402±1—1800 UTC on 15 January 2022. Atmospheric forcing lasted much longer than rupturing from large earthquakes recorded on modern instruments, producing a type of shock wave that originated from the interaction between compressed air and ambient (wavy) sea surface. This scenario differs from conventional ideas of earthquake slip, landslides, or caldera collapse-generated tsunami waves because of the enormous (∼1000x) volumetric change due to the supercritical nature of volatiles associated with the hot, volatile-rich phreatoplinian plume. The time series of plume altitude can be translated to volumetric discharge and mass flow rate. For an eruption duration of ∼12 hours, the eruptive volume and mass are estimated at 1.9 km3 and ∼2,900 Tg, respectively, corresponding to a VEI of 5-6 for this event. The high frequency and intensity of lightning was enhanced by the production of fine ash due to magma—seawater interaction with concomitant high charge per unit mass and the high pre-eruptive concentration of dissolved volatiles. Analysis of lightning flash frequencies provides a rapid metric for plume activity and eruption magnitude. Many aspects of this eruption await further investigation by multidisciplinary teams. It represents a golden opportunity for fundamental research regarding the complex, non-linear behavior of high energetic volcanic eruptions and attendant phenomena, with critical implications for hazard mitigation, volcano forecasting, and first-response efforts in future disasters
    corecore