14 research outputs found

    Transcript of Oral History Interview with Guy and Bess Scruggs

    Get PDF
    Transcript of an oral history interview of Guy and Bess Scruggs conducted by Owen Glen Cosgrove on 21 August 1975. This interview was digitized from cassette format. The Scruggs family was working with Abilene Christian College during its expansion during the 1920s and through the time of the college\u27s dire financial struggles in the 1930s. Mr. Scruggs\u27 thesis on the history of Abilene Christian College is an extensive study of the college during those years. Scruggs and Morris also worked together for many years. Mrs. Scruggs\u27 father was S. N. Allen, for many years a member of the Board of Trustees at Abilene Christian College. Mr. and Mrs. S. N. Allen donated a one-hundred-and-twelve-acre farm to Abilene Christian College in 1944 to help establish the college\u27s agriculture department

    Avoimen systeemin magmaattisten prosessien diagnosointi Magmakammiosimulaattorilla. Osa II: hivenalkuaineet ja isotoopit

    Get PDF
    The Magma Chamber Simulator (MCS) is a thermodynamic model that computes the phase, thermal, and compositional evolution of a multiphase–multicomponent system of a Fractionally Crystallizing resident body of magma (i.e., melt ± solids ± fluid), linked wallrock that may either be assimilated as Anatectic melts or wholesale as Stoped blocks, and multiple Recharge reservoirs (RnASnFC system, where n is the number of user-selected recharge events). MCS calculations occur in two stages; the first utilizes mass and energy balance to produce thermodynamically constrained major element and phase equilibria information for an RnASnFC system; this tool is informally called MCS-PhaseEQ, and is described in a companion paper (Bohrson et al. 2020). The second stage of modeling, called MCS-Traces, calculates the RASFC evolution of up to 48 trace elements and seven radiogenic and one stable isotopic system (Sr, Nd, Hf, 3xPb, Os, and O) for the resident melt. In addition, trace element concentrations are calculated for bulk residual wallrock and each solid (± fluid) phase in the cumulate reservoir and residual wallrock. Input consists of (1) initial trace element concentrations and isotope ratios for the parental melt, wallrock, and recharge magmas/stoped wallrock blocks and (2) solid-melt and solid–fluid partition coefficients (optional temperature-dependence) for stable phases in the resident magma and residual wallrock. Output can be easily read and processed from tabulated worksheets. We provide trace element and isotopic results for the same example cases (FC, R2FC, AFC, S2FC, and R2AFC) presented in the companion paper. These simulations show that recharge processes can be difficult to recognize based on trace element data alone unless there is an independent reference frame of successive recharge events or if serial recharge magmas are sufficiently distinct in composition relative to the parental magma or magmas on the fractionation trend. In contrast, assimilation of wallrock is likely to have a notable effect on incompatible trace element and isotopic compositions of the contaminated resident melt. The magnitude of these effects depends on several factors incorporated into both stages of MCS calculations (e.g., phase equilibria, trace element partitioning, style of assimilation, and geochemistry of the starting materials). Significantly, the effects of assimilation can be counterintuitive and very different from simple scenarios (e.g., bulk mixing of magma and wallrock) that do not take account phase equilibria. Considerable caution should be practiced in ruling out potential assimilation scenarios in natural systems based upon simple geochemical “rules of thumb”. The lack of simplistic responses to open-system processes underscores the need for thermodynamical RASFC models that take into account mass and energy conservation. MCS-Traces provides an unprecedented and detailed framework for utilizing thermodynamic constraints and element partitioning to document trace element and isotopic evolution of igneous systems. Continued development of the Magma Chamber Simulator will focus on easier accessibility and additional capabilities that will allow the tool to better reproduce the documented natural complexities of open-system magmatic processes.Peer reviewe

    Avoimen systeemin magmaattisten prosessien diagnosointi Magmakammiosimulaattorilla. Osa I: pääalkuaineet ja faasitasapainot

    Get PDF
    The Magma Chamber Simulator (MCS) is a thermodynamic tool for modeling the evolution of magmatic systems that are open with respect to assimilation of partial melts or stoped blocks, magma recharge + mixing, and fractional crystallization. MCS is available for both PC and Mac. In the MCS, the thermal, mass, and compositional evolution of a multicomponent-multiphase composite system of resident magma, wallrock, and recharge reservoirs is tracked by rigorous self-consistent thermodynamic modeling. A Recharge-Assimilation (Assimilated partial melt or Stoped blocks)-Fractional Crystallization (R(n)AS(n)FC;n(tot) The trace element and isotope MCS computational tool (MCS-Traces) is described in a separate contribution (part II).Peer reviewe

    Meta-analyses of the determinants and outcomes of belief in climate change

    Get PDF
    Recent growth in the number of studies examining belief in climate change is a positive development, but presents an ironic challenge in that it can be difficult for academics, practitioners and policy makers to keep pace. As a response to this challenge, we report on a meta-analysis of the correlates of belief in climate change. Twenty-seven variables were examined by synthesizing 25 polls and 171 academic studies across 56 nations. Two broad conclusions emerged. First, many intuitively appealing variables (such as education, sex, subjective knowledge, and experience of extreme weather events) were overshadowed in predictive power by values, ideologies, worldviews and political orientation. Second, climate change beliefs have only a small to moderate effect on the extent to which people are willing to act in climate-friendly ways. Implications for converting sceptics to the climate change cause—and for converting believers’ intentions into action—are discussed
    corecore