485 research outputs found
Characterizing Heterogeneous Behavior of Non-Point-Source Polluters in a Spatial Game under Alternate Sensing and Incentive Designs
Behavioral research on natural resource management has revealed a number of variables that can impact collective action. This research builds upon an interactive decision game using experimental economics methods with a focus on production decisions and the corresponding impact they have on ambient water quality. Using hierarchical clustering algorithms, four primary types of behavior are identified: competitive, hypercompetitive, cooperative, and hypercooperative. The results from the experiment are used to test the following three hypotheses: (1) financial incentives increase cooperative behavior, (2) increasing the number and frequency of water quality sensors increases cooperative behavior, and (3) the spatial location of the agents and sensors affect cooperative behavior. Mixed-effect multinomial logistic models reveal that policy incentives, sensor location, and frequency of sensing alter the behavioral strategies of decision makers in the experiment and that outcomes vary by spatial location. From a watershed planning perspective, minimal investments in advanced environmental monitoring/sensing systems can potentially have large effects in improving water quality; however, there is also some evidence of marginal diminishing returns associated with such investments
The cancer patient and cardiology
Advances in cancer treatments have improved clinical outcomes, leading to an increasing population of cancer survivors. However, this success is associated with high rates of short- and long-term cardiovascular (CV) toxicities. The number and variety of cancer drugs and CV toxicity types make long-term care a complex undertaking. This requires a multidisciplinary approach that includes expertise in oncology, cardiology and other related specialties, and has led to the development of the cardio-oncology subspecialty. This paper aims to provide an overview of the main adverse events, risk assessment and risk mitigation strategies, early diagnosis, medical and complementary strategies for prevention and management, and long-term follow-up strategies for patients at risk of cancer therapy-related cardiotoxicities. Research to better define strategies for early identification, follow-up and management is highly necessary. Although the academic cardio-oncology community may be the best vehicle to foster awareness and research in this field, additional stakeholders (industry, government agencies and patient organizations) must be involved to facilitate cross-discipline interactions and help in the design and funding of cardio-oncology trials. The overarching goals of cardio-oncology are to assist clinicians in providing optimal care for patients with cancer and cancer survivors, to provide insight into future areas of research and to search for collaborations with industry, funding bodies and patient advocates. However, many unmet needs remain. This document is the product of brainstorming presentations and active discussions held at the Cardiovascular Round Table workshop organized in January 2020 by the European Society of Cardiology.</p
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
New Functions of Ctf18-RFC in Preserving Genome Stability outside Its Role in Sister Chromatid Cohesion
Expansion of DNA trinucleotide repeats causes at least 15 hereditary neurological diseases, and these repeats also undergo contraction and fragility. Current models to explain this genetic instability invoke erroneous DNA repair or aberrant replication. Here we show that CAG/CTG tracts are stabilized in Saccharomyces cerevisiae by the alternative clamp loader/unloader Ctf18-Dcc1-Ctf8-RFC complex (Ctf18-RFC). Mutants in Ctf18-RFC increased all three forms of triplet repeat instabilityβexpansions, contractions, and fragilityβwith effect over a wide range of allele lengths from 20β155 repeats. Ctf18-RFC predominated among the three alternative clamp loaders, with mutants in Elg1-RFC or Rad24-RFC having less effect on trinucleotide repeats. Surprisingly, chl1, scc1-73, or scc2-4 mutants defective in sister chromatid cohesion (SCC) did not increase instability, suggesting that Ctf18-RFC protects triplet repeats independently of SCC. Instead, three results suggest novel roles for Ctf18-RFC in facilitating genomic stability. First, genetic instability in mutants of Ctf18-RFC was exacerbated by simultaneous deletion of the fork stabilizer Mrc1, but suppressed by deletion of the repair protein Rad52. Second, single-cell analysis showed that mutants in Ctf18-RFC had a slowed S phase and a striking G2/M accumulation, often with an abnormal multi-budded morphology. Third, ctf18 cells exhibit increased Rad52 foci in S phase, often persisting into G2, indicative of high levels of DNA damage. The presence of a repeat tract greatly magnified the ctf18 phenotypes. Together these results indicate that Ctf18-RFC has additional important functions in preserving genome stability, besides its role in SCC, which we propose include lesion bypass by replication forks and post-replication repair
Minimizing the source of nociception and its concurrent effect on sensory hypersensitivity: An exploratory study in chronic whiplash patients
Abstract. Background. The cervical zygapophyseal joints may be a primary source of pain in up to 60% of individuals with chronic whiplash associated disorders (WAD) and may be a contributing factor for peripheral and centrally mediated pain (sensory hypersensitivity). Sensory hypersensitivity has been associated with a poor prognosis. The purpose of the study was to determine if there is a change in measures indicative of sensory hypersensitivity in patients with chronic WAD grade II following a medial branch block (MBB) procedure in the cervical spine. Methods. Measures of sensory hypersensitivity were taken via quantitative sensory testing (QST) consisting of pressure pain thresholds (PPT's) and cold pain thresholds (CPT's). In patients with chronic WAD (n = 18), the measures were taken at three sites bilaterally, pre- and post- MBB. Reduced pain thresholds at remote sites have been considered an indicator of central hypersensitivity. A healthy age and gender matched comparison group (n = 18) was measured at baseline. An independent t-test was applied to determine if there were any significant differences between the WAD and normative comparison groups at baseline with respect to cold pain and pressure pain thresholds. A dependent t-test was used to determine whether there were any significant differences between the pre and post intervention cold pain and pressure pain thresholds in the patients with chronic WAD. Results. At baseline, PPT's were decreased at all three sites in the WAD group (p < 0.001). Cold pain thresholds were increased in the cervical spine in the WAD group (p < 0.001). Post-MBB, the WAD group showed significant increases in PPT's at all sites (p < 0.05), and significant decreases in CPT's at the cervical spine (p < 0.001). Conclusions. The patients with chronic WAD showed evidence of widespread sensory hypersensitivity to mechanical and thermal stimuli. The WAD group revealed decreased sensory hypersensitivity following a decrease in their primary source of pain stemming from the cervical zygapophyseal joints
Contribution of Exogenous Genetic Elements to the Group A Streptococcus Metagenome
Variation in gene content among strains of a bacterial species contributes to biomedically relevant differences in phenotypes such as virulence and antimicrobial resistance. Group A Streptococcus (GAS) causes a diverse array of human infections and sequelae, and exhibits a complex pathogenic behavior. To enhance our understanding of genotype-phenotype relationships in this important pathogen, we determined the complete genome sequences of four GAS strains expressing M protein serotypes (M2, M4, and 2 M12) that commonly cause noninvasive and invasive infections. These sequences were compared with eight previously determined GAS genomes and regions of variably present gene content were assessed. Consistent with the previously determined genomes, each of the new genomes is βΌ1.9 Mb in size, with βΌ10% of the gene content of each encoded on variably present exogenous genetic elements. Like the other GAS genomes, these four genomes are polylysogenic and prophage encode the majority of the variably present gene content of each. In contrast to most of the previously determined genomes, multiple exogenous integrated conjugative elements (ICEs) with characteristics of conjugative transposons and plasmids are present in these new genomes. Cumulatively, 242 new GAS metagenome genes were identified that were not present in the previously sequenced genomes. Importantly, ICEs accounted for 41% of the new GAS metagenome gene content identified in these four genomes. Two large ICEs, designated 2096-RD.2 (63 kb) and 10750-RD.2 (49 kb), have multiple genes encoding resistance to antimicrobial agents, including tetracycline and erythromycin, respectively. Also resident on these ICEs are three genes encoding inferred extracellular proteins of unknown function, including a predicted cell surface protein that is only present in the genome of the serotype M12 strain cultured from a patient with acute poststreptococcal glomerulonephritis. The data provide new information about the GAS metagenome and will assist studies of pathogenesis, antimicrobial resistance, and population genomics
AMP-Activated Kinase Restricts Rift Valley Fever Virus Infection by Inhibiting Fatty Acid Synthesis
The cell intrinsic innate immune responses provide a first line of defense against viral infection, and often function by targeting cellular pathways usurped by the virus during infection. In particular, many viruses manipulate cellular lipids to form complex structures required for viral replication, many of which are dependent on de novo fatty acid synthesis. We found that the energy regulator AMPK, which potently inhibits fatty acid synthesis, restricts infection of the Bunyavirus, Rift Valley Fever Virus (RVFV), an important re-emerging arthropod-borne human pathogen for which there are no effective vaccines or therapeutics. We show restriction of RVFV both by AMPK and its upstream activator LKB1, indicating an antiviral role for this signaling pathway. Furthermore, we found that AMPK is activated during RVFV infection, leading to the phosphorylation and inhibition of acetyl-CoA carboxylase, the first rate-limiting enzyme in fatty acid synthesis. Activating AMPK pharmacologically both restricted infection and reduced lipid levels. This restriction could be bypassed by treatment with the fatty acid palmitate, demonstrating that AMPK restricts RVFV infection through its inhibition of fatty acid biosynthesis. Lastly, we found that this pathway plays a broad role in antiviral defense since additional viruses from disparate families were also restricted by AMPK and LKB1. Therefore, AMPK is an important component of the cell intrinsic immune response that restricts infection through a novel mechanism involving the inhibition of fatty acid metabolism
- β¦