100 research outputs found

    Water-soluble organic aerosol in the Los Angeles Basin and outflow regions: Airborne and ground measurements during the 2010 CalNex field campaign

    Get PDF
    A particle-into-liquid sampler coupled to a total organic carbon analyzer (PILS-TOC) quantified particulate water-soluble organic carbon (WSOC) mass concentrations during the May 2010 deployment of the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter in the CalNex field study. WSOC data collected during 16 flights provide the first spatiotemporal maps of WSOC in the San Joaquin Valley, Los Angeles Basin, and outflow regions of the Basin. WSOC was consistently higher in concentration within the Los Angeles Basin, where sea breeze transport and Basin topography strongly influence the spatial distribution of WSOC. The highest WSOC levels were associated with fire plumes, highlighting the importance of both primary and secondary sources for WSOC in the region. Residual pollution layers enriched with WSOC are observed aloft up to an altitude of 3.2 km and the highest WSOC levels for each flight were typically observed above 500 m. Simultaneous ground WSOC measurements during aircraft overpasses in Pasadena and Riverside typically exhibit lower levels, especially when relative humidity (RH) was higher aloft suggestive of the influence of aerosol-phase water. This points to the underestimation of the radiative effects of WSOC when using only surface measurements. Reduced aerosol-phase water in the eastern desert outflow region likely promotes the re-partitioning of WSOC to the gas phase and suppression of processes to produce these species (partitioning, multiphase chemistry, photolytic production); as a result, WSOC is reduced relative to sulfate (but not as much as nitrate) as aerosol is advected from the Basin to the outflows

    Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol

    Get PDF
    The production, size, and chemical composition of sea spray aerosol (SSA) particles strongly depend on seawater chemistry, which is controlled by physical, chemical, and biological processes. Despite decades of studies in marine environments, a direct relationship has yet to be established between ocean biology and the physicochemical properties of SSA. The ability to establish such relationships is hindered by the fact that SSA measurements are typically dominated by overwhelming background aerosol concentrations even in remote marine environments. Herein, we describe a newly developed approach for reproducing the chemical complexity of SSA in a laboratory setting, comprising a unique ocean-atmosphere facility equipped with actual breaking waves. A mesocosm experiment was performed in natural seawater, using controlled phytoplankton and heterotrophic bacteria concentrations, which showed SSA size and chemical mixing state are acutely sensitive to the aerosol production mechanism, as well as to the type of biological species present. The largest reduction in the hygroscopicity of SSA occurred as heterotrophic bacteria concentrations increased, whereas phytoplankton and chlorophyll-a concentrations decreased, directly corresponding to a change in mixing state in the smallest (60–180 nm) size range. Using this newly developed approach to generate realistic SSA, systematic studies can now be performed to advance our fundamental understanding of the impact of ocean biology on SSA chemical mixing state, heterogeneous reactivity, and the resulting climate-relevant properties

    Composition and hygroscopicity of the Los Angeles Aerosol: CalNex

    Get PDF
    Aircraft-based measurements of aerosol composition, either bulk or single-particle, and both subsaturated and supersaturated hygroscopicity were made in the Los Angeles Basin and its outflows during May 2010 during the CalNex field study. Aerosol composition evolves from source-rich areas in the western Basin to downwind sites in the eastern Basin, evidenced by transition from an external to internal mixture, as well as enhancements in organic O : C ratio, the amount of organics and nitrate internally mixed on almost all particle types, and coating thickness on refractory black carbon (rBC). Transport into hot, dilute outflow regions leads to significant volatilization of semivolatile material, resulting in a unimodal aerosol comprising primarily oxygenated, low-volatility, water-soluble organics and sulfate. The fraction of particles with rBC or soot cores is between 27 and 51% based on data from a Single Particle Soot Photometer (SP2) and Aerosol Time of Flight Mass Spectrometer (ATOFMS). Secondary organics appear to inhibit subsaturated water uptake in aged particles, while CCN activity is enhanced with photochemical age. A biomass-burning event resulted in suppression of subsaturated hygroscopicity but enhancement in CCN activity, suggesting that BB particles may be nonhygroscopic at subsaturated RH but are important sources of CCN. Aerosol aging and biomass burning can lead to discrepancies between subsaturated and supersaturated hygroscopicity that may be related to mixing state. In the cases of biomass burning aerosol and aged particles coated with secondary material, more than a single parameter representation of subsaturated hygroscopicity and CCN activity is needed

    On the link between ocean biota emissions, aerosol, and maritime clouds: Airborne, ground, and satellite measurements off the coast of California

    Get PDF
    Surface, airborne, and satellite measurements over the eastern Pacific Ocean off the coast of California during the period between 2005 and 2007 are used to explore the relationship between ocean chlorophyll a, aerosol, and marine clouds. Periods of enhanced chlorophyll a and wind speed are coincident with increases in particulate diethylamine and methanesulfonate concentrations. The measurements indicate that amines are a source of secondary organic aerosol in the marine atmosphere. Subsaturated aerosol hygroscopic growth measurements indicate that the organic component during periods of high chlorophyll a and wind speed exhibit considerable water uptake ability. Increased average cloud condensation nucleus (CCN) activity during periods of increased chlorophyll a levels likely results from both size distribution and aerosol composition changes. The available data over the period of measurements indicate that the cloud microphysical response, as represented by either cloud droplet number concentration or cloud droplet effective radius, is likely influenced by a combination of atmospheric dynamics and aerosol perturbations during periods of high chlorophyll a concentrations

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Temozolomide induces senescence but not apoptosis in human melanoma cells

    Get PDF
    Temozolomide (TMZ), a DNA alkylating agent used in the treatment of melanoma, is believed to mediate its effect by addition of a methyl group to the O6 position of guanine in DNA. Resistance to the agent may be in part due to the activity of O6-methylguanine-DNA methyl transferase (MGMT). In the present study, we show that sensitivity of melanoma cells to TMZ was dependent on their p53 status and levels of MGMT. Analysis of the mechanisms underlying reduced viability showed no evidence for induction of apoptosis even though marked levels of apoptosis was seen in TK6 lymphoma cells. Sensitivity of melanoma cells was associated with p53-dependent G2/M cell cycle arrest and induction of senescence. To verify the role of p53, the assays were repeated in presence of pifithrin-α, an inhibitor of p53. This resulted in increased viability of melanoma cells with wild-type p53 and reversed G2/M cell cycle arrest. Paradoxically, apoptosis was increased in melanoma but decreased as expected in TK6 lymphoma cells. These results are consistent with the view that TMZ is relatively ineffective against melanoma due to defective apoptotic signalling resulting from activation of p53. The nature of the defects in apoptotic signalling remains to be explored

    Entrepreneurial growth and ownership under market socialism in China: a longitudinal case study of small business growth

    Get PDF
    How firms grow is still a mystery and a definitive explanation remains elusive. This is especially the case for emerging economies, where the development of research into business growth has been notably slow whilst emerging business ventures are developing at hyper speed. Since most empirical studies have focused on the quantitative differences in growth across firms, this paper adopts a longitudinal case study approach to explore the qualitative differences in terms of how various types of firm achieve their growth outcomes in the organisational development process over a prolonged period of time. Through a theoretical lens which focuses on growth process approaches, this study not only demonstrates that entrepreneurial processes take different forms and dimensions in different contexts, but it also provides insights into the interactions of various organisational factors underpinning the strategies and changes that lead to contrasting growth outcomes. Case study findings assert that the ownership factor is a key contingent factor that shapes management structure and resources which, in turn, affect particular entrepreneurial outcomes. Furthermore, a combination of leadership style and the approach to knowledge management also play critical roles in the learning process which, tends to determine the strategy choice of either high or low value added product strategy. The findings of this research are that small firms with a low value product strategy can improve their survival chances and growth through the vertical broadening of a product portfolio in synchrony with increasing production and technology advancement. The case study companies show a tendency to reinforce their industry position by adopting contrasting choices for growth. The paper addresses the challenges and managerial implications for Western company managers in different growth contexts
    corecore