11,723 research outputs found

    Soliton crystals in Kerr resonators

    Full text link
    Strongly interacting solitons confined to an optical resonator would offer unique capabilities for experiments in communication, computation, and sensing with light. Here we report on the discovery of soliton crystals in monolithic Kerr microresonators-spontaneously and collectively ordered ensembles of co-propagating solitons whose interactions discretize their allowed temporal separations. We unambiguously identify and characterize soliton crystals through analysis of their 'fingerprint' optical spectra, which arise from spectral interference between the solitons. We identify a rich space of soliton crystals exhibiting crystallographic defects, and time-domain measurements directly confirm our inference of their crystal structure. The crystallization we observe is explained by long-range soliton interactions mediated by resonator mode degeneracies, and we probe the qualitative difference between soliton crystals and a soliton liquid that forms in the absence of these interactions. Our work explores the rich physics of monolithic Kerr resonators in a new regime of dense soliton occupation and offers a way to greatly increase the efficiency of Kerr combs; further, the extreme degeneracy of the configuration space of soliton crystals suggests an implementation for a robust on-chip optical buffer

    Five Simple Rules to Avoid Plagiarism.

    No full text

    Self-referencing a continuous-wave laser with electro-optic modulation

    Get PDF
    We phase-coherently measure the frequency of continuous-wave (CW) laser light by use of optical-phase modulation and f-2f nonlinear interferometry. Periodic electro-optic modulation (EOM) transforms the CW laser into a continuous train of picosecond optical pulses. Subsequent nonlinear-fiber broadening of this EOM frequency comb produces a supercontinuum with 160 THz of bandwidth. A critical intermediate step is optical filtering of the EOM comb to reduce electronic-noise-induced decoherence of the supercontinuum. Applying f-2f self-referencing with the supercontinuum yields the carrier-envelope offset frequency of the EOM comb, which is precisely the difference of the CW laser frequency and an exact integer multiple of the EOM pulse repetition rate. Here we demonstrate absolute optical frequency metrology and synthesis applications of the self-referenced CW laser with <5E-14 fractional accuracy and stability.Comment: 8 pages, 4 figure

    A microrod-resonator Brillouin laser with 240 Hz absolute linewidth

    Get PDF
    We demonstrate an ultralow-noise microrod-resonator based laser that oscillates on the gain supplied by the stimulated Brillouin scattering optical nonlinearity. Microresonator Brillouin lasers are known to offer an outstanding frequency noise floor, which is limited by fundamental thermal fluctuations. Here, we show experimental evidence that thermal effects also dominate the close-to-carrier frequency fluctuations. The 6-mm diameter microrod resonator used in our experiments has a large optical mode area of ~100 {\mu}m2^2, and hence its 10 ms thermal time constant filters the close-to-carrier optical frequency noise. The result is an absolute laser linewidth of 240 Hz with a corresponding white-frequency noise floor of 0.1 Hz2^2/Hz. We explain the steady-state performance of this laser by measurements of its operation state and of its mode detuning and lineshape. Our results highlight a mechanism for noise that is common to many microresonator devices due to the inherent coupling between intracavity power and mode frequency. We demonstrate the ability to reduce this noise through a feedback loop that stabilizes the intracavity power.Comment: 11 pages, 5 figure

    Diagrammatic Coupled Cluster Monte Carlo

    Get PDF
    We propose a modified coupled cluster Monte Carlo algorithm that stochastically samples connected terms within the truncated Baker--Campbell--Hausdorff expansion of the similarity transformed Hamiltonian by construction of coupled cluster diagrams on the fly. Our new approach -- diagCCMC -- allows propagation to be performed using only the connected components of the similarity-transformed Hamiltonian, greatly reducing the memory cost associated with the stochastic solution of the coupled cluster equations. We show that for perfectly local, noninteracting systems, diagCCMC is able to represent the coupled cluster wavefunction with a memory cost that scales linearly with system size. The favorable memory cost is observed with the only assumption of fixed stochastic granularity and is valid for arbitrary levels of coupled cluster theory. Significant reduction in memory cost is also shown to smoothly appear with dissociation of a finite chain of helium atoms. This approach is also shown not to break down in the presence of strong correlation through the example of a stretched nitrogen molecule. Our novel methodology moves the theoretical basis of coupled cluster Monte Carlo closer to deterministic approaches.Comment: 31 pages, 6 figure
    • …
    corecore