12,619 research outputs found
Soliton crystals in Kerr resonators
Strongly interacting solitons confined to an optical resonator would offer
unique capabilities for experiments in communication, computation, and sensing
with light. Here we report on the discovery of soliton crystals in monolithic
Kerr microresonators-spontaneously and collectively ordered ensembles of
co-propagating solitons whose interactions discretize their allowed temporal
separations. We unambiguously identify and characterize soliton crystals
through analysis of their 'fingerprint' optical spectra, which arise from
spectral interference between the solitons. We identify a rich space of soliton
crystals exhibiting crystallographic defects, and time-domain measurements
directly confirm our inference of their crystal structure. The crystallization
we observe is explained by long-range soliton interactions mediated by
resonator mode degeneracies, and we probe the qualitative difference between
soliton crystals and a soliton liquid that forms in the absence of these
interactions. Our work explores the rich physics of monolithic Kerr resonators
in a new regime of dense soliton occupation and offers a way to greatly
increase the efficiency of Kerr combs; further, the extreme degeneracy of the
configuration space of soliton crystals suggests an implementation for a robust
on-chip optical buffer
Self-referencing a continuous-wave laser with electro-optic modulation
We phase-coherently measure the frequency of continuous-wave (CW) laser light
by use of optical-phase modulation and f-2f nonlinear interferometry. Periodic
electro-optic modulation (EOM) transforms the CW laser into a continuous train
of picosecond optical pulses. Subsequent nonlinear-fiber broadening of this EOM
frequency comb produces a supercontinuum with 160 THz of bandwidth. A critical
intermediate step is optical filtering of the EOM comb to reduce
electronic-noise-induced decoherence of the supercontinuum. Applying f-2f
self-referencing with the supercontinuum yields the carrier-envelope offset
frequency of the EOM comb, which is precisely the difference of the CW laser
frequency and an exact integer multiple of the EOM pulse repetition rate. Here
we demonstrate absolute optical frequency metrology and synthesis applications
of the self-referenced CW laser with <5E-14 fractional accuracy and stability.Comment: 8 pages, 4 figure
FAPRI 2005 Outlook for Missouri Agriculture
Agricultural and Food Policy,
A microrod-resonator Brillouin laser with 240 Hz absolute linewidth
We demonstrate an ultralow-noise microrod-resonator based laser that
oscillates on the gain supplied by the stimulated Brillouin scattering optical
nonlinearity. Microresonator Brillouin lasers are known to offer an outstanding
frequency noise floor, which is limited by fundamental thermal fluctuations.
Here, we show experimental evidence that thermal effects also dominate the
close-to-carrier frequency fluctuations. The 6-mm diameter microrod resonator
used in our experiments has a large optical mode area of ~100 {\mu}m, and
hence its 10 ms thermal time constant filters the close-to-carrier optical
frequency noise. The result is an absolute laser linewidth of 240 Hz with a
corresponding white-frequency noise floor of 0.1 Hz/Hz. We explain the
steady-state performance of this laser by measurements of its operation state
and of its mode detuning and lineshape. Our results highlight a mechanism for
noise that is common to many microresonator devices due to the inherent
coupling between intracavity power and mode frequency. We demonstrate the
ability to reduce this noise through a feedback loop that stabilizes the
intracavity power.Comment: 11 pages, 5 figure
Diagrammatic Coupled Cluster Monte Carlo
We propose a modified coupled cluster Monte Carlo algorithm that
stochastically samples connected terms within the truncated
Baker--Campbell--Hausdorff expansion of the similarity transformed Hamiltonian
by construction of coupled cluster diagrams on the fly. Our new approach --
diagCCMC -- allows propagation to be performed using only the connected
components of the similarity-transformed Hamiltonian, greatly reducing the
memory cost associated with the stochastic solution of the coupled cluster
equations. We show that for perfectly local, noninteracting systems, diagCCMC
is able to represent the coupled cluster wavefunction with a memory cost that
scales linearly with system size. The favorable memory cost is observed with
the only assumption of fixed stochastic granularity and is valid for arbitrary
levels of coupled cluster theory. Significant reduction in memory cost is also
shown to smoothly appear with dissociation of a finite chain of helium atoms.
This approach is also shown not to break down in the presence of strong
correlation through the example of a stretched nitrogen molecule. Our novel
methodology moves the theoretical basis of coupled cluster Monte Carlo closer
to deterministic approaches.Comment: 31 pages, 6 figure
- …