897 research outputs found

    From sensorimotor dependencies to perceptual practices: making enactivism social

    Get PDF
    Proponents of enactivism should be interested in exploring what notion of action best captures the type of action-perception link that the view proposes, such that it covers all the aspects in which our doings constitute and are constituted by our perceiving. This article proposes and defends the thesis that the notion of sensorimotor dependencies is insufficient to account for the reality of human perception, and that the central enactive notion should be that of perceptual practices. Sensorimotor enactivism is insufficient because it has no traction on socially dependent perceptions, which are essential to the role and significance of perception in our lives. Since the social dimension is a central desideratum in a theory of human perception, enactivism needs a notion that accounts for such an aspect. This article sketches the main features of the Wittgenstein-inspired notion of perceptual practices as the central notion to understand perception. Perception, I claim, is properly understood as woven into a type of social practices that includes food, dance, dress, music, etc. More specifically, perceptual practices are the enactment of culturally structured, normatively rich techniques of commerce of meaningful multi- and inter-modal perceptible material. I argue that perceptual practices explain three central features of socially dependent perception: attentional focus, aspects’ saliency, and modal-specific harmony-like relations

    Influence of orbital symmetry on diffraction imaging with rescattering electron wave packets

    Get PDF
    Citation: Pullen, M. G., Wolter, B., Le, A. T., Baudisch, M., Sclafani, M., Pires, H., . . . Biegert, J. (2016). Influence of orbital symmetry on diffraction imaging with rescattering electron wave packets. Nature Communications, 7, 6. doi:10.1038/ncomms11922The ability to directly follow and time-resolve the rearrangement of the nuclei within molecules is a frontier of science that requires atomic spatial and few-femtosecond temporal resolutions. While laser-induced electron diffraction can meet these requirements, it was recently concluded that molecules with particular orbital symmetries (such as pi(g)) cannot be imaged using purely backscattering electron wave packets without molecular alignment. Here, we demonstrate, in direct contradiction to these findings, that the orientation and shape of molecular orbitals presents no impediment for retrieving molecular structure with adequate sampling of the momentum transfer space. We overcome previous issues by showcasing retrieval of the structure of randomly oriented O-2 and C2H2 molecules, with pi(g) and pi(u) symmetries, respectively, and where their ionization probabilities do not maximize along their molecular axes. While this removes a serious bottleneck for laser-induced diffraction imaging, we find unexpectedly strong backscattering contributions from low-Z atoms

    Intravascular Food Reward

    Get PDF
    Consumption of calorie-containing sugars elicits appetitive behavioral responses and dopamine release in the ventral striatum, even in the absence of sweet-taste transduction machinery. However, it is unclear if such reward-related postingestive effects reflect preabsorptive or postabsorptive events. In support of the importance of postabsorptive glucose detection, we found that, in rat behavioral tests, high concentration glucose solutions administered in the jugular vein were sufficient to condition a side-bias. Additionally, a lower concentration glucose solution conditioned robust behavioral responses when administered in the hepatic-portal, but not the jugular vein. Furthermore, enteric administration of glucose at a concentration that is sufficient to elicit behavioral conditioning resulted in a glycemic profile similar to that observed after administration of the low concentration glucose solution in the hepatic-portal, but not jugular vein. Finally using fast-scan cyclic voltammetry we found that, in accordance with behavioral findings, a low concentration glucose solution caused an increase in spontaneous dopamine release events in the nucleus accumbens shell when administered in the hepatic-portal, but not the jugular vein. These findings demonstrate that the postabsorptive effects of glucose are sufficient for the postingestive behavioral and dopaminergic reward-related responses that result from sugar consumption. Furthermore, glycemia levels in the hepatic-portal venous system contribute more significantly for this effect than systemic glycemia, arguing for the participation of an intra-abdominal visceral sensor for glucose

    Book Reviews

    Get PDF
    With the observation of high-energy astrophysical neutrinos by the IceCube Neutrino Observatory, interest has risen in models of PeV-mass decaying dark matter particles to explain the observed flux. We present two dedicated experimental analyses to test this hypothesis. One analysis uses 6 years of IceCube data focusing on muon neutrino ‘track’ events from the Northern Hemisphere, while the second analysis uses 2 years of ‘cascade’ events from the full sky. Known background components and the hypothetical flux from unstable dark matter are fitted to the experimental data. Since no significant excess is observed in either analysis, lower limits on the lifetime of dark matter particles are derived: we obtain the strongest constraint to date, excluding lifetimes shorter than 102810^{28} s at 90% CL for dark matter masses above 10 TeV

    Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data

    Get PDF
    We report a quasi-differential upper limit on the extremely-high-energy (EHE) neutrino flux above 5×1065\times 10^{6} GeV based on an analysis of nine years of IceCube data. The astrophysical neutrino flux measured by IceCube extends to PeV energies, and it is a background flux when searching for an independent signal flux at higher energies, such as the cosmogenic neutrino signal. We have developed a new method to place robust limits on the EHE neutrino flux in the presence of an astrophysical background, whose spectrum has yet to be understood with high precision at PeV energies. A distinct event with a deposited energy above 10610^{6} GeV was found in the new two-year sample, in addition to the one event previously found in the seven-year EHE neutrino search. These two events represent a neutrino flux that is incompatible with predictions for a cosmogenic neutrino flux and are considered to be an astrophysical background in the current study. The obtained limit is the most stringent to date in the energy range between 5×1065 \times 10^{6} and 5×10105 \times 10^{10} GeV. This result constrains neutrino models predicting a three-flavor neutrino flux of $E_\nu^2\phi_{\nu_e+\nu_\mu+\nu_\tau}\simeq2\times 10^{-8}\ {\rm GeV}/{\rm cm}^2\ \sec\ {\rm sr}at at 10^9\ {\rm GeV}$. A significant part of the parameter-space for EHE neutrino production scenarios assuming a proton-dominated composition of ultra-high-energy cosmic rays is excluded.Comment: The version accepted for publication in Physical Review

    Neutrinos below 100 TeV from the southern sky employing refined veto techniques to IceCube data

    Get PDF
    Many Galactic sources of gamma rays, such as supernova remnants, are expected to produce neutrinos with a typical energy cutoff well below 100 TeV. For the IceCube Neutrino Observatory located at the South Pole, the southern sky, containing the inner part of the Galactic plane and the Galactic Center, is a particularly challenging region at these energies, because of the large background of atmospheric muons. In this paper, we present recent advancements in data selection strategies for track-like muon neutrino events with energies below 100 TeV from the southern sky. The strategies utilize the outer detector regions as veto and features of the signal pattern to reduce the background of atmospheric muons to a level which, for the first time, allows IceCube searching for point-like sources of neutrinos in the southern sky at energies between 100 GeV and several TeV in the muon neutrino charged current channel. No significant clustering of neutrinos above background expectation was observed in four years of data recorded with the completed IceCube detector. Upper limits on the neutrino flux for a number of spectral hypotheses are reported for a list of astrophysical objects in the southern hemisphere.Comment: 19 pages, 17 figures, 2 table

    Search for transient optical counterparts to high-energy IceCube neutrinos with Pan-STARRS1

    Get PDF
    In order to identify the sources of the observed diffuse high-energy neutrino flux, it is crucial to discover their electromagnetic counterparts. IceCube began releasing alerts for single high-energy (E>60E > 60 TeV) neutrino detections with sky localisation regions of order 1 deg radius in 2016. We used Pan-STARRS1 to follow-up five of these alerts during 2016-2017 to search for any optical transients that may be related to the neutrinos. Typically 10-20 faint (m<22.5m < 22.5 mag) extragalactic transients are found within the Pan-STARRS1 footprints and are generally consistent with being unrelated field supernovae (SNe) and AGN. We looked for unusual properties of the detected transients, such as temporal coincidence of explosion epoch with the IceCube timestamp. We found only one transient that had properties worthy of a specific follow-up. In the Pan-STARRS1 imaging for IceCube-160427A (probability to be of astrophysical origin of \sim50 %), we found a SN PS16cgx, located at 10.0' from the nominal IceCube direction. Spectroscopic observations of PS16cgx showed that it was an H-poor SN at z = 0.2895. The spectra and light curve resemble some high-energy Type Ic SNe, raising the possibility of a jet driven SN with an explosion epoch temporally coincident with the neutrino detection. However, distinguishing Type Ia and Type Ic SNe at this redshift is notoriously difficult. Based on all available data we conclude that the transient is more likely to be a Type Ia with relatively weak SiII absorption and a fairly normal rest-frame r-band light curve. If, as predicted, there is no high-energy neutrino emission from Type Ia SNe, then PS16cgx must be a random coincidence, and unrelated to the IceCube-160427A. We find no other plausible optical transient for any of the five IceCube events observed down to a 5σ\sigma limiting magnitude of m22m \sim 22 mag, between 1 day and 25 days after detection.Comment: 20 pages, 6 figures, accepted to A&

    A Search for Neutrino Emission from Fast Radio Bursts with Six Years of IceCube Data

    Get PDF
    We present a search for coincidence between IceCube TeV neutrinos and fast radio bursts (FRBs). During the search period from 2010 May 31 to 2016 May 12, a total of 29 FRBs with 13 unique locations have been detected in the whole sky. An unbinned maximum likelihood method was used to search for spatial and temporal coincidence between neutrinos and FRBs in expanding time windows, in both the northern and southern hemispheres. No significant correlation was found in six years of IceCube data. Therefore, we set upper limits on neutrino fluence emitted by FRBs as a function of time window duration. We set the most stringent limit obtained to date on neutrino fluence from FRBs with an E2E^{-2} energy spectrum assumed, which is 0.0021 GeV cm2^{-2} per burst for emission timescales up to \textasciitilde102^2 seconds from the northern hemisphere stacking search.Comment: 15 pages, 9 figure

    Our past creates our present: a brief overview of racism and colonialism in Western paleontology

    Get PDF
    As practitioners of a historical science, paleontologists and geoscientists are well versed in the idea that the ability to understand and to anticipate the future relies upon our collective knowledge of the past. Despite this understanding, the fundamental role that the history of paleontology and the geosciences plays in shaping the structure and culture of our disciplines is seldom recognized and therefore not acted upon sufficiently. Here, we present a brief review of the history of paleontology and geology in Western countries, with a particular focus on North America since the 1800s. Western paleontology and geology are intertwined with systematic practices of exclusion, oppression, and erasure that arose from their direct participation in the extraction of geological and biological resources at the expense of Black, Indigenous, and People of Color (BIPOC). Our collective failure to acknowledge this history hinders our ability to address these issues meaningfully and systemically in present-day educational, academic, and professional settings. By discussing these issues and suggesting some ways forward, we intend to promote a deeper reflection upon our collective history and a broader conversation surrounding racism, colonialism, and exclusion within our scientific communities. Ultimately, it is necessary to listen to members of the communities most impacted by these issues to create actionable steps forward while holding ourselves accountable for the past
    corecore