259 research outputs found

    The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest

    Get PDF
    Vegetation in water-limited ecosystems relies strongly on access to deep water reserves to withstand dry periods. Most of these ecosystems have shallow soils over deep groundwater reserves. Understanding the functioning and functional plasticity of species-specific root systems and the patterns of or differences in the use of water sources under more frequent or intense droughts is therefore necessary to properly predict the responses of seasonally dry ecosystems to future climate. We used stable isotopes to investigate the seasonal patterns of water uptake by a sclerophyll forest on sloped terrain with shallow soils. We assessed the effect of a long-term experimental drought (12 years) and the added impact of an extreme natural drought that produced widespread tree mortality and crown defoliation. The dominant species, Quercus ilex, Arbutus unedo and Phillyrea latifolia, all have dimorphic root systems enabling them to access different water sources in space and time. The plants extracted water mainly from the soil in the cold and wet seasons but increased their use of groundwater during the summer drought. Interestingly, the plants subjected to the long-term experimental drought shifted water uptake toward deeper (10-35 cm) soil layers during the wet season and reduced groundwater uptake in summer, indicating plasticity in the functional distribution of fine roots that dampened the effect of our experimental drought over the long term. An extreme drought in 2011, however, further reduced the contribution of deep soil layers and groundwater to transpiration, which resulted in greater crown defoliation in the drought-affected plants. The present study suggests that extreme droughts aggravate moderate but persistent drier conditions (simulated by our manipulation) and may lead to the depletion of water from groundwater reservoirs and weathered bedrock, threatening the preservation of these Mediterranean ecosystems in their current structures and composition

    Complexity in water and carbon dioxide fluxes following rain pulses in an African savanna

    Get PDF
    The idea that many processes in arid and semi-arid ecosystems are dormant until activated by a pulse of rainfall, and then decay from a maximum rate as the soil dries, is widely used as a conceptual and mathematical model, but has rarely been evaluated with data. This paper examines soil water, evapotranspiration (ET), and net ecosystem CO2 exchange measured for 5 years at an eddy covariance tower sited in an Acacia–Combretum savanna near Skukuza in the Kruger National Park, South Africa. The analysis characterizes ecosystem flux responses to discrete rain events and evaluates the skill of increasingly complex “pulse models”. Rainfall pulses exert strong control over ecosystem-scale water and CO2 fluxes at this site, but the simplest pulse models do a poor job of characterizing the dynamics of the response. Successful models need to include the time lag between the wetting event and the process peak, which differ for evaporation, photosynthesis and respiration. Adding further complexity, the time lag depends on the prior duration and degree of water stress. ET response is well characterized by a linear function of potential ET and a logistic function of profile-total soil water content, with remaining seasonal variation correlating with vegetation phenological dynamics (leaf area). A 1- to 3-day lag to maximal ET following wetting is a source of hysteresis in the ET response to soil water. Respiration responds to wetting within days, while photosynthesis takes a week or longer to reach its peak if the rainfall was preceded by a long dry spell. Both processes exhibit nonlinear functional responses that vary seasonally. We conclude that a more mechanistic approach than simple pulse modeling is needed to represent daily ecosystem C processes in semiarid savannas

    Effects of growth rate, size, and light availability on tree survival across life stages: a demographic analysis accounting for missing values and small sample sizes.

    Get PDF
    The data set supporting the results of this article is available in the Dryad repository, http://dx.doi.org/10.5061/dryad.6f4qs. Moustakas, A. and Evans, M. R. (2015) Effects of growth rate, size, and light availability on tree survival across life stages: a demographic analysis accounting for missing values.Plant survival is a key factor in forest dynamics and survival probabilities often vary across life stages. Studies specifically aimed at assessing tree survival are unusual and so data initially designed for other purposes often need to be used; such data are more likely to contain errors than data collected for this specific purpose

    The limited importance of size-asymmetric light competition and growth of pioneer species in early secondary forest succession in Vietnam

    Get PDF
    It is generally believed that asymmetric competition for light plays a predominant role in determining the course of succession by increasing size inequalities between plants. Size-related growth is the product of size-related light capture and light-use efficiency (LUE). We have used a canopy model to calculate light capture and photosynthetic rates of pioneer species in sequential vegetation stages of a young secondary forest stand. Growth of the same saplings was followed in time as succession proceeded. Photosynthetic rate per unit plant mass (Pmass: mol C g−1 day−1), a proxy for plant growth, was calculated as the product of light capture efficiency [Φmass: mol photosynthetic photon flux density (PPFD) g−1 day−1] and LUE (mol C mol PPFD−1). Species showed different morphologies and photosynthetic characteristics, but their light-capturing and light-use efficiencies, and thus Pmass, did not differ much. This was also observed in the field: plant growth was not size-asymmetric. The size hierarchy that was present from the very early beginning of succession remained for at least the first 5 years. We conclude, therefore, that in slow-growing regenerating vegetation stands, the importance of asymmetric competition for light and growth can be much less than is often assumed

    Ecological Invasion, Roughened Fronts, and a Competitor's Extreme Advance: Integrating Stochastic Spatial-Growth Models

    Full text link
    Both community ecology and conservation biology seek further understanding of factors governing the advance of an invasive species. We model biological invasion as an individual-based, stochastic process on a two-dimensional landscape. An ecologically superior invader and a resident species compete for space preemptively. Our general model includes the basic contact process and a variant of the Eden model as special cases. We employ the concept of a "roughened" front to quantify effects of discreteness and stochasticity on invasion; we emphasize the probability distribution of the front-runner's relative position. That is, we analyze the location of the most advanced invader as the extreme deviation about the front's mean position. We find that a class of models with different assumptions about neighborhood interactions exhibit universal characteristics. That is, key features of the invasion dynamics span a class of models, independently of locally detailed demographic rules. Our results integrate theories of invasive spatial growth and generate novel hypotheses linking habitat or landscape size (length of the invading front) to invasion velocity, and to the relative position of the most advanced invader.Comment: The original publication is available at www.springerlink.com/content/8528v8563r7u2742

    The spatial scale of competition from recruits on an older cohort in Atlantic salmon

    Get PDF
    Competitive effects of younger cohorts on older ones are frequently assumed to be negligible in species where older, larger individuals dominate in pairwise behavioural interactions. Here, we provide field estimates of such competition by recruits on an older age class in Atlantic salmon (Salmo salar), a species where observational studies have documented strong body size advantages which should favour older individuals in direct interactions. By creating realistic levels of spatial variation in the density of underyearling (YOY) recruits over a 1-km stretch of a stream, and obtaining accurate measurements of individual growth rates of overyearlings (parr) from capture–mark–recapture data on a fine spatial scale, we demonstrate that high YOY density can substantially decrease parr growth. Models integrating multiple spatial scales indicated that parr were influenced by YOY density within 16 m. The preferred model suggested parr daily mass increase to be reduced by 39% when increasing YOY density from 0.0 to 1.0 m−2, which is well within the range of naturally occurring densities. Reduced juvenile growth rates will in general be expected to reduce juvenile survival (via increased length of exposure to freshwater mortality) and increase generation times (via increased age at seaward migrations). Thus, increased recruitment can significantly affect the performance of older cohorts, with important implications for population dynamics. Our results highlight that, even for the wide range of organisms that rely on defendable resources, the direction of competition among age classes cannot be assumed a priori or be inferred from behavioural observations alone

    Scale-invariant structure of size fluctuations in plants

    Get PDF
    A wide range of physical and biological systems exhibit complex behaviours characterised by a scale-invariant structure of the fluctuations in their output signals. In the context of plant populations, scaling relationships are typically allometric. In this study, we analysed spatial variation in the size of maize plants (Zea Mays L.) grown in agricultural plots at constant densities and found evidence of scaling in the size fluctuations of plants. The findings indicate that the scaling of the probability distribution of spatial size fluctuation exhibits non-Gaussian behaviour compatible with a Lévy stable process. The scaling relationships were observed for spatial scales spanning three orders of magnitude. These findings should provide additional information for the selection and development of empirically accurate models of pattern formation in plant populations

    Effects of climate and snow depth on Bromus tectorum population dynamics at high elevation

    Get PDF
    Invasive plants are thought to be especially capable of range shifts or expansion in response to climate change due to high dispersal and colonization abilities. Although highly invasive throughout the Intermountain West, the presence and impact of the grass Bromus tectorum has been limited at higher elevations in the eastern Sierra Nevada, potentially due to extreme wintertime conditions. However, climate models project an upward elevational shift of climate regimes in the Sierra Nevada that could favor B. tectorum expansion. This research specifically examined the effects of experimental snow depth manipulations and interannual climate variability over 5 years on B. tectorum populations at high elevation (2,175 m). Experimentally-increased snow depth had an effect on phenology and biomass, but no effect on individual fecundity. Instead an experimentally-increased snowpack inhibited population growth in 1 year by reducing seedling emergence and early survival. A similar negative effect of increased snow was observed 2 years later. However, a strong negative effect on B. tectorum was also associated with a naturally low-snow winter, when seedling emergence was reduced by 86%. Across 5 years, winters with greater snow cover and a slower accumulation of degree-days coincided with higher B. tectorum seedling density and population growth. Thus, we observed negative effects associated with both experimentally-increased and naturally-decreased snowpacks. It is likely that the effect of snow at high elevation is nonlinear and differs from lower elevations where wintertime germination can be favorable. Additionally, we observed a doubling of population size in 1 year, which is alarming at this elevation

    Stable-isotope techniques to investigate sources of plant water

    Get PDF
    Stable isotopologues of water (mainly 1H216O, HD16O and 1H218O) have been used for decades as tracers of the Earth's water cycle. In this chapter, we briefly describe the theoretical background and state-of-the-art techniques of the use of water stable isotopes to investigate the sources of plant water. We aim to provide the basic understanding of stable isotope fractionation within the Earth's critical zone that is relevant for studies of plant water sources. We then present a practical guide of their most common applications in field studies and the most common and up-to-date laboratory procedures. We finally introduce the existing statistical approaches for estimating the relative contributions of water sources to plant transpiration. By acknowledging the advantages and limitations of each approach, we aim to provide an overview of the current techniques to researchers in the fields of plant ecophysiology, ecohydrology and forest ecology, so that they can make informed decisions when designing their experiments

    Using Plant Functional Traits to Explain Diversity–Productivity Relationships

    Get PDF
    Background: The different hypotheses proposed to explain positive species richness–productivity relationships, i.e. selection effect and complementarity effect, imply that plant functional characteristics are at the core of a mechanistic understanding of biodiversity effects. Methodology/Principal Findings: We used two community-wide measures of plant functional composition, (1) community- weighted means of trait values (CWM) and (2) functional trait diversity based on Rao’s quadratic diversity (FDQ) to predict biomass production and measures of biodiversity effects in experimental grasslands (Jena Experiment) with different species richness (2, 4, 8, 16 and 60) and different functional group number and composition (1 to 4; legumes, grasses, small herbs, tall herbs) four years after establishment. Functional trait composition had a larger predictive power for community biomass and measures of biodiversitity effects (40–82% of explained variation) than species richness per se (,1–13% of explained variation). CWM explained a larger amount of variation in community biomass (80%) and net biodiversity effects (70%) than FDQ (36 and 38% of explained variation respectively). FDQ explained similar proportions of variation in complementarity effects (24%, positive relationship) and selection effects (28%, negative relationship) as CWM (27% of explained variation for both complementarity and selection effects), but for all response variables the combination of CWM and FDQ led to significant model improvement compared to a separate consideration of different components of functional trait composition. Effects of FDQ were mainly attributable to diversity in nutrient acquisition and life-history strategies. The large spectrum of traits contributing to positive effects of CWM on biomass production and net biodiversity effects indicated that effects of dominant species were associated with different trait combinations. Conclusions/Significance: Our results suggest that the identification of relevant traits and the relative impacts of functional identity of dominant species and functional diversity are essential for a mechanistic understanding of the role of plant diversity for ecosystem processes such as aboveground biomass production
    corecore