216 research outputs found

    The Advanced LIGO timing system

    Get PDF
    Gravitational wave detection using a network of detectors relies upon the precise time stamping of gravitational wave signals. The relative arrival times between detectors are crucial, e.g. in recovering the source direction, an essential step in using gravitational waves for multi-messenger astronomy. Due to the large size of gravitational wave detectors, timing at different parts of a given detector also needs to be highly synchronized. In general, the requirement toward the precision of timing is determined such that, upon detection, the deduced (astro-) physical results should not be limited by the precision of timing. The Advanced LIGO optical timing distribution system is designed to provide UTC-synchronized timing information for the Advanced LIGO detectors that satisfies the above criterium. The Advanced LIGO timing system has modular structure, enabling quick and easy adaptation to the detector frame as well as possible changes or additions of components. It also includes a self-diagnostics system that enables the remote monitoring of the status of timing. After the description of the Advanced LIGO timing system, several tests are presented that demonstrate its precision and robustness

    Accurate measurement of the time delay in the response of the LIGO gravitational wave detectors

    Get PDF
    We present a method to precisely calibrate the time delay in a long baseline gravitational-wave interferometer. An accurate time stamp is crucial for data analysis of gravitational wave detectors, especially when performing coincidence and correlation analyses between multiple detectors. Our method uses an intensity-modulated radiation pressure force to actuate on the mirrors. The time delay is measured by comparing the phase of the signal at the actuation point with the phase of the recorded signal within the calibrated data stream used for gravitational wave searches. Because the signal-injection path is independent of the interferometer's control system, which is used for the standard calibration, this method can be an independent verification of the timing error in the system. A measurement performed with the 4 km interferometer at the LIGO Hanford Observatory shows a 1 µs relative accuracy when averaging over 50 min. Our understanding of the systematic time delay in the detector response has reached the level of 10 µs

    Past electron-positron g-2 experiments yielded sharpest bound on CPT violation for point particles

    Full text link
    In our past experiments on a single electron and positron we measured the cyclotron and spin-cyclotron difference frequencies omega_c and omega_a and the ratios a = omega_a/ omega_c at omega_c = 141 Ghz for e^- and e^+ and later, only for e^-, also at 164 Ghz. Here, we do extract from these data, as had not done before, a new and very different figure of merit for violation of CPT symmetry, one similar to the widely recognized impressive limit |m_Kaon - m_Antikaon|/m_Kaon < 10^-18 for the K-mesons composed of two quarks. That expression may be seen as comparing experimental relativistic masses of particle states before and after the C, P, T operations had transformed particle into antiparticle. Such a similar figure of merit for a non-composite and quite different lepton, found by us from our Delta a = a^- - a^+ data, was even smaller, h_bar |omega_a^- - omega_a^+|/2m_0 c^2 = |Delta a| h_bar omega_c/2m_0 c^2) < 3(12) 10^-22.Comment: Improved content, Editorially approved for publication in PRL, LATEX file, 5 pages, no figures, 16

    Lorentz and CPT Tests in Matter and Antimatter

    Full text link
    A review of recent theoretical work investigating tests of Lorentz and CPT symmetry in atomic and particle systems is presented. A variety of tests in matter and antimatter are discussed, including measurements of anomalous magnetic moments in Penning traps, comparisons of atomic-clock transitions, high-precision spectroscopic measurements of hydrogen and antihydrogen, experiments with muons, experiments with mesons, and tests of Lorentz symmetry with a spin-polarized torsion pendulum.Comment: 8 pages. Talk presented at POSITRON 03, Sandbjerg, Denmark, July 200

    A constraint on antigravity of antimatter from precision spectroscopy of simple atoms

    Get PDF
    Consideration of antigravity for antiparticles is an attractive target for various experimental projects. There are a number of theoretical arguments against it but it is not quite clear what kind of experimental data and theoretical suggestions are involved. In this paper we present straightforward arguments against a possibility of antigravity based on a few simple theoretical suggestions and some experimental data. The data are: astrophysical data on rotation of the Solar System in respect to the center of our galaxy and precision spectroscopy data on hydrogen and positronium. The theoretical suggestions for the case of absence of the gravitational field are: equality of electron and positron mass and equality of proton and positron charge. We also assume that QED is correct at the level of accuracy where it is clearly confirmed experimentally

    N=1 Supersymetric Quantum Mechanics in a Scenario with Lorentz-Symmetry Violation

    Get PDF
    We show in this paper that the dynamics of a non-relativistic particle with spin, coupled to an external electromagnetic field and to a background that breaks Lorentz symmetry, is naturally endowed with an N=1-supersymmetry. This result is achieved in a superspace approach where the particle coordinates and the spin degrees of freedom are components of the same supermultiplet.Comment: 6 pages, no figure

    The Advanced LIGO Photon Calibrators

    Get PDF
    The two interferometers of the Laser Interferometry Gravitaional-wave Observatory (LIGO) recently detected gravitational waves from the mergers of binary black hole systems. Accurate calibration of the output of these detectors was crucial for the observation of these events, and the extraction of parameters of the sources. The principal tools used to calibrate the responses of the second-generation (Advanced) LIGO detectors to gravitational waves are systems based on radiation pressure and referred to as Photon Calibrators. These systems, which were completely redesigned for Advanced LIGO, include several significant upgrades that enable them to meet the calibration requirements of second-generation gravitational wave detectors in the new era of gravitational-wave astronomy. We report on the design, implementation, and operation of these Advanced LIGO Photon Calibrators that are currently providing fiducial displacements on the order of 101810^{-18} m/Hz\sqrt{\textrm{Hz}} with accuracy and precision of better than 1 %.Comment: 14 pages, 19 figure

    CPT and Lorentz Tests in Penning Traps

    Get PDF
    A theoretical analysis is performed of Penning-trap experiments testing CPT and Lorentz symmetry through measurements of anomalous magnetic moments and charge-to-mass ratios. Possible CPT and Lorentz violations arising from spontaneous symmetry breaking at a fundamental level are treated in the context of a general extension of the SU(3) x SU(2) x U(1) standard model and its restriction to quantum electrodynamics. We describe signals that might appear in principle, introduce suitable figures of merit, and estimate CPT and Lorentz bounds attainable in present and future Penning-trap experiments. Experiments measuring anomaly frequencies are found to provide the sharpest tests of CPT symmetry. Bounds are attainable of approximately 102010^{-20} in the electron-positron case and of 102310^{-23} for a suggested experiment with protons and antiprotons. Searches for diurnal frequency variations in these experiments could also limit certain types of Lorentz violation to the level of 101810^{-18} in the electron-positron system and others at the level of 102110^{-21} in the proton-antiproton system. In contrast, measurements comparing cyclotron frequencies are sensitive within the present theoretical framework to different kinds of Lorentz violation that preserve CPT. Constraints could be obtained on one figure of merit in the electron-positron system at the level of 101610^{-16}, on another in the proton-antiproton system at 102410^{-24}, and on a third at 102510^{-25} using comparisons of HH^- ions with antiprotons.Comment: 31 pages, published in Physical Review

    Constraints on Lorentz violation from clock-comparison experiments

    Get PDF
    Constraints from clock-comparison experiments on violations of Lorentz and CPT symmetry are investigated in the context of a general Lorentz-violating extension of the standard model. The experimental signals are shown to depend on the atomic and ionic species used as clocks. Certain experiments usually regarded as establishing comparable bounds are in this context sensitive to different types of Lorentz violation. Some considerations relevant to possible future measurements are presented. All these experiments are potentially sensitive to Lorentz-violating physics at the Planck scale.Comment: accepted for publication in Physical Review D; scheduled for issue of December 1, 199
    corecore