171 research outputs found
Brane-world Kaluza-Klein reductions and Branes on the Brane
We present a systematic study of a new type of consistent ``Brane-world
Kaluza-Klein Reduction,'' which describe fully non-linear deformations of
co-dimension one objects that arise as solutions of a large class of gauged
supergravity theories in diverse dimensions, and whose world-volume theories
are described by ungauged supergravities with one half of the original
supersymmetry. In addition, we provide oxidations of these Ansatze which are in
general related to sphere compactified higher dimensional string theory or
M-theory. Within each class we also provide explicit solutions of brane
configurations localised on the world-brane. We show that at the Cauchy horizon
(in the transverse dimension of the consistently Kaluza-Klein reduced
world-brane) there is a curvature singularity for any configuration with a
non-null Riemann curvature or a non-vanishing Ricci scalar that lives in the
world-brane. Since the massive Kaluza-Klein modes can be consistently
decoupled, they cannot participate in regulating these singularities.Comment: latex, 30 page
A Comparative Transcriptome Analysis of Human and Porcine Choroid Plexus Cells in Response to Streptococcus suis Serotype 2 Infection Points to a Role of Hypoxia
Streptococcus suis (S. suis) is an important opportunistic pathogen, which can cause
septicemia and meningitis in pigs and humans. Previous in vivo observations in S. suisinfected
pigs revealed lesions at the choroid plexus (CP). In vitro experiments with primary
porcine CP epithelial cells (PCPEC) and human CP epithelial papilloma (HIBCPP) cells
demonstrated that S. suis can invade and traverse the CP epithelium, and that the CP
contributes to the inflammatory response via cytokine expression. Here, next generation
sequencing (RNA-seq) was used to compare global transcriptome profiles of PCPEC and
HIBCPP cells challenged with S. suis serotype (ST) 2 infected in vitro, and of pigs infected
in vivo. Identified differentially expressed genes (DEGs) were, amongst others, involved in
inflammatory responses and hypoxia. The RNA-seq data were validated via quantitative
PCR of selected DEGs. Employing Gene Set Enrichment Analysis (GSEA), 18, 28, and 21
enriched hallmark gene sets (GSs) were identified for infected HIBCPP cells, PCPEC, and
in the CP of pigs suffering from S. suis ST2 meningitis, respectively, of which eight GSs
overlapped between the three different sample sets. The majority of these GSs are
involved in cellular signaling and pathways, immune response, and development,
including inflammatory response and hypoxia. In contrast, suppressed GSs observed
during in vitro and in vivo S. suis ST2 infections included those, which were involved in
cellular proliferation and metabolic processes. This study suggests that similar cellular
processes occur in infected human and porcine CP epithelial cells, especially in terms of
inflammatory response
Diffuse alveolar hemorrhage in children with interstitial lung disease: Determine etiologies!
OBJECTIVE: Diffuse alveolar hemorrhage (DAH) in children is a rare condition resulting from different underlying diseases. This study aimed at describing characteristics and diagnostic measures in children with ILD (children\u27s interstitial lung disease, chILD) and DAH to improve the diagnostic approach by increasing clinician\u27s awareness of diagnostic shortcomings.
PATIENTS AND METHODS: A retrospective data analysis of patients with ILD and DAH treated in our own or collaborating centers between 01/07/1997 and 31/12/2020 was performed. Data on clinical courses and diagnostic measures were systematically retrieved as case-vignettes and investigated. To assess suitability of diagnostic software-algorithms, the Human Phenotype Ontology (HPO) was revised and expanded to optimize conditions of its associated tool the Phenomizer.
RESULTS: For 97 (74%) of 131 patients, etiology of pulmonary hemorrhage was clarified. For 34 patients (26%), no underlying condition was found (termed as idiopathic pulmonary hemorrhage, IPH). Based on laboratory findings or clinical phenotype/comorbidities, 20 of these patients were assigned to descriptive clusters: IPH associated with autoimmune features (9), eosinophilia (5), renal disease (3) or multiorgan involvement (3). For 14 patients, no further differentiation was possible.
CONCLUSION: Complete and sometimes repeated diagnostics are essential for establishing the correct diagnosis in children with DAH. We suggest assignment of patients with IPH to descriptive clusters, which may also guide further research. Digital tools such as the Phenomizer/HPO are promising, but need to be extended to increase diagnostic accuracy
A Novel Porcine In Vitro Model of the Blood-Cerebrospinal Fluid Barrier with Strong Barrier Function
Epithelial cells of the plexus choroideus form the structural basis of the blood-cerebrospinal fluid barrier (BCSFB). In vitro models of the BCSFB presenting characteristics of a functional barrier are of significant scientific interest as tools for examination of BCSFB function. Due to a lack of suitable cell lines as in vitro models, primary porcine plexus epithelial cells were subjected to a series of selective cultivation steps until a stable continuous subcultivatable epithelial cell line (PCP-R) was established. PCP-R cells grow in a regular polygonal pattern with a doubling time of 28â36 h. At a cell number of 1.5Ă105 in a 24-well plate confluence is reached in 56â72 h. Cells are cytokeratin positive and chromosomal analysis revealed 56 chromosomes at peak (84th subculture). Employing reverse transcription PCR mRNA expression of several transporters and components of cell junctions could be detected. The latter includes tight junction components like Claudin-1 and -3, ZO-1, and Occludin, and the adherens junction protein E-cadherin. Cellular localization studies of ZO-1, Occludin and Claudin-1 by immunofluorescence and morphological analysis by electron microscopy demonstrated formation of a dense tight junction structure. Importantly, when grown on cell culture inserts PCP-R developed typical characteristics of a functional BCSFB including high transepithelial electrical resistance above 600 ΩĂcm2 as well as low permeability for macromolecules. In summary, our data suggest the PCP-R cell line as a suitable in vitro model of the porcine BCSFB
dSAP18 and dHDAC1 contribute to the functional regulation of the Drosophila Fab-7 element
It was described earlier that the Drosophila GAGA factor [Trithorax-like (Trl)] interacts with dSAP18, which, in mammals, was reported to be a component of the Sin3âHDAC co-repressor complex. GAGAâdSAP18 interaction was proposed to contribute to the functional regulation of the bithorax complex (BX-C). Here, we show that mutant alleles of Trl, dsap18 and drpd3/hdac1 enhance A6-to-A5 transformation indicating a contribution to the regulation of Abd-B expression at A6. In A6, expression of Abd-B is driven by the iab-6 enhancer, which is insulated from iab-7 by the Fab-7 element. Here, we report that GAGA, dSAP18 and dRPD3/HDAC1 co-localize to ectopic Fab-7 sites in polytene chromosomes and that mutant Trl, dsap18 and drpd3/hdac1 alleles affect Fab-7-dependent silencing. Consistent with these findings, chromatin immunoprecipitation analysis shows that, in Drosophila embryos, the endogenous Fab-7 element is hypoacetylated at histones H3 and H4. These results indicate a contribution of GAGA, dSAP18 and dRPD3/HDAC1 to the regulation of Fab-7 function
Cyclin L1 (CCNL1) gene alterations in human head and neck squamous cell carcinoma
We evaluated the expression and amplification of cyclin L1 (CCNL1) gene, a potential oncogene localised in the commonly amplified 3q25â28 region, in human head and neck squamous cell carcinomas (HNSCCs). Overexpression was observed in 55 out of 96 cases (57%) and amplification in nine out of 35 tumours (26%) with no relationships to the clinico-pathological parameters. The Cyclin L1 antibody we developed labels nuclear speckles in tumour cells compatible with a role for CCNL1 in RNA splicing
Wheeze in Preschool Age Is Associated with Pulmonary Bacterial Infection and Resolves after Antibiotic Therapy
BACKGROUND: Neonates with airways colonized by Haemophilus influenzae, Streptococcus pneumoniae or Moraxella catarrhalis are at increased risk for recurrent wheeze which may resemble asthma early in life. It is not clear whether chronic colonization by these pathogens is causative for severe persistent wheeze in some preschool children and whether these children might benefit from antibiotic treatment. We assessed the relevance of bacterial colonization and chronic airway infection in preschool children with severe persistent wheezing and evaluated the outcome of long-time antibiotic treatment on the clinical course in such children. METHODOLOGY/PRINCIPAL FINDINGS: Preschool children (nâ=â42) with severe persistent wheeze but no symptoms of acute pulmonary infection were investigated by bronchoscopy and bronchoalveolar lavage (BAL). Differential cell counts and microbiological and virological analyses were performed on BAL samples. Patients diagnosed with bacterial infection were treated with antibiotics for 2-16 weeks (nâ=â29). A modified ISAAC questionnaire was used for follow-up assessment of children at least 6 months after bronchoscopy. Of the 42 children with severe wheezing, 34 (81%) showed a neutrophilic inflammation and 20 (59%) of this subgroup had elevated bacterial counts (â„ 10⎠colony forming units per milliliter) suggesting infection. Haemophilus influenzae, Streptococcus pneumoniae and Moraxella catarrhalis were the most frequently isolated species. After treatment with appropriate antibiotics 92% of patients showed a marked improvement of symptoms upon follow-up examination. CONCLUSIONS/SIGNIFICANCE: Chronic bacterial infections are relevant in a subgroup of preschool children with persistent wheezing and such children benefit significantly from antibiotic therapy
Differential splicing using whole-transcript microarrays
<p>Abstract</p> <p>Background</p> <p>The latest generation of Affymetrix microarrays are designed to interrogate expression over the entire length of every locus, thus giving the opportunity to study alternative splicing genome-wide. The Exon 1.0 ST (sense target) platform, with versions for Human, Mouse and Rat, is designed primarily to probe every known or predicted exon. The smaller Gene 1.0 ST array is designed as an expression microarray but still interrogates expression with probes along the full length of each well-characterized transcript. We explore the possibility of using the Gene 1.0 ST platform to identify differential splicing events.</p> <p>Results</p> <p>We propose a strategy to score differential splicing by using the auxiliary information from fitting the statistical model, RMA (robust multichip analysis). RMA partitions the probe-level data into probe effects and expression levels, operating robustly so that if a small number of probes behave differently than the rest, they are downweighted in the fitting step. We argue that adjacent poorly fitting probes for a given sample can be evidence of <it>differential </it>splicing and have designed a statistic to search for this behaviour. Using a public tissue panel dataset, we show many examples of tissue-specific alternative splicing. Furthermore, we show that evidence for putative alternative splicing has a strong correspondence between the Gene 1.0 ST and Exon 1.0 ST platforms.</p> <p>Conclusion</p> <p>We propose a new approach, FIRMAGene, to search for differentially spliced genes using the Gene 1.0 ST platform. Such an analysis complements the search for differential expression. We validate the method by illustrating several known examples and we note some of the challenges in interpreting the probe-level data.</p> <p>Software implementing our methods is freely available as an <monospace>R</monospace> package.</p
- âŠ