386 research outputs found

    The Triangle Groups (2, 4, 5) and (2, 5, 5) are not Systolic

    Get PDF
    In this paper we provide new examples of hyperbolic but nonsystolic groups by showing that the triangle groups (2, 4, 5) and (2, 5, 5) are not systolic. Along the way we prove some results about subsets of systolic complexes stable under involutions

    \Lambda-buildings and base change functors

    Full text link
    We prove an analog of the base change functor of \Lambda-trees in the setting of generalized affine buildings. The proof is mainly based on local and global combinatorics of the associated spherical buildings. As an application we obtain that the class of generalized affine building is closed under ultracones and asymptotic cones. Other applications involve a complex of groups decompositions and fixed point theorems for certain classes of generalized affine buildings.Comment: revised version, 29 pages, to appear in Geom. Dedicat

    Sp1 and Sp3 regulate basal transcription of the human APOBEC3G gene

    Get PDF
    APOBEC3G (A3G), a member of the recently discovered family of human cytidine deaminases, is expressed in peripheral blood lymphocytes and has been shown to be active against HIV-1 and other retroviruses. To gain new insights into the transcriptional regulation of this restriction factor, we cloned and characterized the promoter region of A3G. Transcriptional start sites were identified by 5′-rapid amplification of cDNA ends analysis. Luciferase reporter assays demonstrated that a 1025 bp A3G promoter sequence (from −959 to +66 relative to the major transcriptional start site) displayed constitutive promoter activity. In T cells, the A3G promoter was not inducible by mitogenic stimulation, interferon treatment or expression of HIV-1 proteins. Using a series of 5′ deletion promoter constructs in luciferase reporter assays, we identified a 180 bp region that was sufficient for full promoter activity. Transcriptional activity of this A3G core promoter was dependent on a GC-box (located at position −87/−78 relative to the major transcriptional start site) and was abolished after mutation of this DNA element. Electrophoretic mobility shift assays and chromatin immunoprecipitation assays demonstrated that the identified GC-box represented a binding site for the ubiquitous transcription factors specificity protein (Sp) 1 and Sp3

    Three-minute oscillations above sunspot umbra observed with SDO/AIA and NoRH

    Full text link
    Three-minute oscillations over sunspot's umbra in AR 11131 were observed simultaneously in UV/EUV emission by SDO/AIA and in radio emission by Nobeyama Radioheliograph (NoRH). We use 24-hours series of SDO and 8-hours series of NoRH observations to study spectral, spatial and temporal variations of pulsations in the 5-9 mHz frequency range at different layers of the solar atmosphere. High spatial and temporal resolution of SDO/AIA in combination with long-duration observations allowed us to trace the variations of the cut-off frequency and spectrum of oscillations across the umbra. We found that higher frequency oscillations are more pronounced closer to the umbra's center, while the lower frequencies concentrate to the peripheral parts. We interpreted this discovery as a manifestation of variation of the magnetic field inclination across the umbra at the level of temperature-minimum. Possible implications of this interpretation for the diagnostics of sunspot atmospheres is discussed.Comment: 29 pages, 7 figures, in press ApJ, 201

    Charge Imbalance Effects on Interlayer Hopping and Fermi Surfaces in Multilayered High-T_c Cuprates

    Full text link
    We study doping dependence of interlayer hoppings, t_\perp, in multilayered cuprates with four or more CuO_2 planes in a unit cell. When the double occupancy is forbidden in the plane, an effective amplitude of t_\perp in the Gutzwiller approximation is shown to be proportional to the square root of the product of doping rates in adjacent two planes, i.e., t^eff_\perp \propto t_\perp \sqrt{\delta_1\delta_2}, where \delta_1 and \delta_2 represent the doping rates of the two planes. More than three-layered cuprates have two kinds of \cuo planes, i.e., inner- and outer planes (IP and OP), resulting in two different values of t^eff_{\perp}, i.e., t^eff_\perp 1 \propto t_\perp \sqrt{\delta_IP \delta_IP} between IP's, and t^eff_\perp 2 \propto t_\perp \sqrt{\delta_IP \delta_OP} between IP and OP. Fermi surfaces are calculated in the four-layered t-t'-t''-J model by the mean-field theory. The order parameters, the renormalization factor of t_\perp, and the site-potential making the charge imbalance between IP and OP are self-consistently determined for several doping rates. We show the interlayer splitting of the Fermi surfaces, which may be observed in the angle resolved photoemission spectroscopy measurement.Comment: Some typographical errors are revised. Journal of Physical Society of Japan, Vol.75, No.3, in pres

    Blast Shock Wave Mitigation Using the Hydraulic Energy Redirection and Release Technology

    Get PDF
    A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel

    ATP-Dependent Unwinding of U4/U6 snRNAs by the Brr2 Helicase Requires the C Terminus of Prp8

    Get PDF
    The spliceosome is a highly dynamic machine requiring multiple RNA-dependent ATPases of the DExD/H-box family. A fundamental unanswered question is how their activities are regulated. Brr2 function is necessary for unwinding the U4/U6 duplex, a step essential for catalytic activation of the spliceosome. Here we show that Brr2-dependent dissociation of U4/U6 snRNAs in vitro is activated by a fragment from the C terminus of the U5 snRNP protein Prp8. In contrast to its helicase-stimulating activity, this fragment inhibits Brr2 U4/U6-dependent ATPase activity. Notably, U4/U6 unwinding activity is not stimulated by fragments carrying alleles of prp8 that in humans confers an autosomal dominant form of retinitis pigmentosa. Because Brr2 activity must be restricted to prevent premature catalytic activation, our results have important implications for fidelity maintenance in the spliceosome

    Genome-Wide Profiling of H3K56 Acetylation and Transcription Factor Binding Sites in Human Adipocytes

    Get PDF
    The growing epidemic of obesity and metabolic diseases calls for a better understanding of adipocyte biology. The regulation of transcription in adipocytes is particularly important, as it is a target for several therapeutic approaches. Transcriptional outcomes are influenced by both histone modifications and transcription factor binding. Although the epigenetic states and binding sites of several important transcription factors have been profiled in the mouse 3T3-L1 cell line, such data are lacking in human adipocytes. In this study, we identified H3K56 acetylation sites in human adipocytes derived from mesenchymal stem cells. H3K56 is acetylated by CBP and p300, and deacetylated by SIRT1, all are proteins with important roles in diabetes and insulin signaling. We found that while almost half of the genome shows signs of H3K56 acetylation, the highest level of H3K56 acetylation is associated with transcription factors and proteins in the adipokine signaling and Type II Diabetes pathways. In order to discover the transcription factors that recruit acetyltransferases and deacetylases to sites of H3K56 acetylation, we analyzed DNA sequences near H3K56 acetylated regions and found that the E2F recognition sequence was enriched. Using chromatin immunoprecipitation followed by high-throughput sequencing, we confirmed that genes bound by E2F4, as well as those by HSF-1 and C/EBPα, have higher than expected levels of H3K56 acetylation, and that the transcription factor binding sites and acetylation sites are often adjacent but rarely overlap. We also discovered a significant difference between bound targets of C/EBPα in 3T3-L1 and human adipocytes, highlighting the need to construct species-specific epigenetic and transcription factor binding site maps. This is the first genome-wide profile of H3K56 acetylation, E2F4, C/EBPα and HSF-1 binding in human adipocytes, and will serve as an important resource for better understanding adipocyte transcriptional regulation.Singapore. Agency for Science, Technology and Research (National Science Scholarship )Massachusetts Institute of Technology (Eugene Bell Career Development Chair)National Science Foundation (U.S.) (Award No. DBI-0821391)Pfizer Inc

    Thermally-activated cation ordering in ZnGa2Se4 single crystals studied by Raman scattering, optical absorption, and ab initio calculations

    Get PDF
    Order-disorder phase transitions induced by thermal annealing have been studied in the ordered-vacancy compound ZnGa2Se4 by means of Raman scattering and optical absorption measurements. The partially disordered as-grown sample with tetragonal defect stannite (DS) structure and I (4) over bar 2m space group has been subjected to controlled heating and cooling cycles. In situ Raman scattering measurements carried out during the whole annealing cycle show that annealing the sample to 400 degrees C results in a cation ordering in the sample, leading to the crystallization of the ordered tetragonal defect chalcopyrite (DC) structure with I (4) over bar space group. On decreasing temperature the ordered cation scheme of the DC phase can be retained at ambient conditions. The symmetry of the Raman-active modes in both DS and DC phases is discussed and the similarities and differences between the Raman spectra of the two phases emphasized. The ordered structure of annealed samples is confirmed by optical absorption measurements and ab initio calculations, that show that the direct bandgap of DC-ZnGa2Se4 is larger than that of DS-ZnGa2Se4.This study was supported by the Spanish government MEC under grants MAT2010-21270-C04-01/03/04 and MAT2010-19837-C06-06, by MALTA Consolider Ingenio 2010 project (CSD2007-00045), and by the Vicerrectorado de Investigacion y Desarrollo of the Universitat Politecnica de Valencia (UPV2011-0914 PAID-05-11 and UPV2011-0966 PAID-06-11). EP-G, AM, and PR-H acknowledge computing time provided by Red Espanola de Supercomputacion (RES) and MALTA-Cluster. Finally, the authors would also like to acknowledge M C Moron for stimulating discussions and revision of the present manuscript.Vilaplana Cerda, RI.; Gomis Hilario, O.; Pérez-González, E.; Ortiz, HM.; Manjón Herrera, FJ.; Rodríguez-Hernández, P.; Muñoz, A.... (2013). Thermally-activated cation ordering in ZnGa2Se4 single crystals studied by Raman scattering, optical absorption, and ab initio calculations. Journal of Physics: Condensed Matter. 25(16):165802-1-165802-11. https://doi.org/10.1088/0953-8984/25/16/165802S165802-1165802-112516Bernard, J. E., & Zunger, A. (1988). Ordered-vacancy-compound semiconductors: PseudocubicCdIn2Se4. Physical Review B, 37(12), 6835-6856. doi:10.1103/physrevb.37.6835Jiang, X., & Lambrecht, W. R. L. (2004). Electronic band structure of ordered vacancy defect chalcopyrite compounds with formulaII−III2−VI4. Physical Review B, 69(3). doi:10.1103/physrevb.69.035201Yahia, I. S., Fadel, M., Sakr, G. B., & Shenouda, S. S. (2010). Memory switching of ZnGa2Se4 thin films as a new material for phase change memories (PCMs). Journal of Alloys and Compounds, 507(2), 551-556. doi:10.1016/j.jallcom.2010.08.021Yahia, I. S., Fadel, M., Sakr, G. B., Yakuphanoglu, F., Shenouda, S. S., & Farooq, W. A. (2011). Analysis of current–voltage characteristics of Al/p-ZnGa2Se4/n-Si nanocrystalline heterojunction diode. Journal of Alloys and Compounds, 509(12), 4414-4419. doi:10.1016/j.jallcom.2011.01.068Hahn, H., Frank, G., Klingler, W., St�rger, A. D., & St�rger, G. (1955). Untersuchungen �ber tern�re Chalkogenide. VI. �ber Tern�re Chalkogenide des Aluminiums, Galliums und Indiums mit Zink, Cadmium und Quecksilber. Zeitschrift f�r anorganische und allgemeine Chemie, 279(5-6), 241-270. doi:10.1002/zaac.19552790502Errandonea, D., Kumar, R. S., Manjón, F. J., Ursaki, V. V., & Tiginyanu, I. M. (2008). High-pressure x-ray diffraction study on the structure and phase transitions of the defect-stannite ZnGa2Se4 and defect-chalcopyrite CdGa2S4. Journal of Applied Physics, 104(6), 063524. doi:10.1063/1.2981089Morón, M. C., & Hull, S. (2003). Order-disorder phase transition inZn1−xMnxGa2Se4: Long-range order parameter versusx. Physical Review B, 67(12). doi:10.1103/physrevb.67.125208Morón, M. C., & Hull, S. (2005). Effect of magnetic dilution in Zn1−xMnxGa2Se4 (0<x<0.5). Journal of Applied Physics, 98(1), 013904. doi:10.1063/1.1944220Morón, M. C., & Hull, S. (2007). The influence of magnetic dilution in the Zn1−xMnxGa2Se4 series with 0.5<x⩽1. Journal of Applied Physics, 102(3), 033919. doi:10.1063/1.2767273Antonioli, G., Lottici, P. P., & Razzetti, C. (1989). The structure of the defect chalcopyrite ZnGa2Se4 studied by EXAFS. physica status solidi (b), 152(1), 39-49. doi:10.1002/pssb.2221520104Haeuseler, H. (1978). FIR- und Ramanspektren von ternären Chalkogeniden des Galliums und Indiums mit Zink, Cadmium und Quecksilber. Journal of Solid State Chemistry, 26(4), 367-376. doi:10.1016/0022-4596(78)90171-8Eifler, A., Krauss, G., Riede, V., Krämer, V., & Grill, W. (2005). Optical phonon modes and structure of ZnGa2Se4 and ZnGa2S4. Journal of Physics and Chemistry of Solids, 66(11), 2052-2057. doi:10.1016/j.jpcs.2005.09.049Lottici, P. P., & Razzetti, C. (1983). A comparison of the raman spectra of ZnGa2Se4 and other gallium defect chalcopyrites. Solid State Communications, 46(9), 681-684. doi:10.1016/0038-1098(83)90506-9Razzetti, C., Lottici, P. P., & Antonioli, G. (1987). Structure and lattice dynamics of nonmagnetic defective AIIBIII2XIV4 compounds and alloys. Progress in Crystal Growth and Characterization, 15(1), 43-73. doi:10.1016/0146-3535(87)90009-8Attolini, G., Bini, S., Lottici, P. P., & Razzetti, C. (1992). Effects of Group III Cation Substitution in the Raman Spectra of Some Defective Chalcopyrites. Crystal Research and Technology, 27(5), 685-690. doi:10.1002/crat.2170270519Takahashi, Y., Namatsu, H., Machida, K., & Minegishi, K. (1993). Measurements of Diffusion Coefficiens of Water in Electron Cryclotron Resonance Plasma SiO2. Japanese Journal of Applied Physics, 32(Part 2, No. 3B), L431-L433. doi:10.1143/jjap.32.l431Ursaki, V. V., Burlakov, I. I., Tiginyanu, I. M., Raptis, Y. S., Anastassakis, E., & Anedda, A. (1999). Phase transitions in defect chalcopyrite compounds under hydrostatic pressure. Physical Review B, 59(1), 257-268. doi:10.1103/physrevb.59.257Allakhverdiev, K., Gashimzade, F., Kerimova, T., Mitani, T., Naitou, T., Matsuishi, K., & Onari, S. (2003). Raman scattering under pressure in ZnGa2Se4. Journal of Physics and Chemistry of Solids, 64(9-10), 1597-1601. doi:10.1016/s0022-3697(03)00077-5Alonso-Gutiérrez, P., Sanjuán, M. L., & Morón, M. C. (2009). Thermally activated cation ordering in Zn0.5Mn0.5Ga2Se4single crystals studied by Raman scattering. physica status solidi (c), 6(5), 1182-1186. doi:10.1002/pssc.200881218Caldera, D., Morocoima, M., Quintero, M., Rincon, C., Casanova, R., & Grima, P. (2011). On the crystal structure of the defective ternary compound. Solid State Communications, 151(3), 212-215. doi:10.1016/j.ssc.2010.11.031Gomis, O., Vilaplana, R., Manjón, F. J., Pérez-González, E., López-Solano, J., Rodríguez-Hernández, P., … Ursaki, V. V. (2012). High-pressure optical and vibrational properties of CdGa2Se4: Order-disorder processes in adamantine compounds. Journal of Applied Physics, 111(1), 013518. doi:10.1063/1.3675162Eifler, A., Hecht, J.-D., Lippold, G., Riede, V., Grill, W., Krauß, G., & Krämer, V. (1999). Combined infrared and Raman study of the optical phonons of defect chalcopyrite single crystals. Physica B: Condensed Matter, 263-264, 806-808. doi:10.1016/s0921-4526(98)01292-7Sanjuán, M. L., & Morón, M. C. (2002). Raman study of Zn1−xMnxGa2Se4 diluted magnetic semiconductors: disorder and resonance effects. Physica B: Condensed Matter, 316-317, 565-567. doi:10.1016/s0921-4526(02)00574-4Letoullec, R., Pinceaux, J. P., & Loubeyre, P. (1988). The membrane diamond anvil cell: A new device for generating continuous pressure and temperature variations. High Pressure Research, 1(1), 77-90. doi:10.1080/08957958808202482Perdew, J. P., Burke, K., & Ernzerhof, M. (1997). Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Physical Review Letters, 78(7), 1396-1396. doi:10.1103/physrevlett.78.1396Manjón, F. J., Gomis, O., Rodríguez-Hernández, P., Pérez-González, E., Muñoz, A., Errandonea, D., … Ursaki, V. V. (2010). Nonlinear pressure dependence of the direct band gap in adamantine ordered-vacancy compounds. Physical Review B, 81(19). doi:10.1103/physrevb.81.195201Santamaría-Pérez, D., Amboage, M., Manjón, F. J., Errandonea, D., Muñoz, A., Rodríguez-Hernández, P., … Tiginyanu, I. M. (2012). Crystal Chemistry of CdIn2S4, MgIn2S4, and MnIn2S4 Thiospinels under High Pressure. The Journal of Physical Chemistry C, 116(26), 14078-14087. doi:10.1021/jp303164kBaroni, S., de Gironcoli, S., Dal Corso, A., & Giannozzi, P. (2001). Phonons and related crystal properties from density-functional perturbation theory. Reviews of Modern Physics, 73(2), 515-562. doi:10.1103/revmodphys.73.515Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., … Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21(39), 395502. doi:10.1088/0953-8984/21/39/395502Kroumova, E., Aroyo, M. I., Perez-Mato, J. M., Kirov, A., Capillas, C., Ivantchev, S., & Wondratschek, H. (2003). Bilbao Crystallographic Server : Useful Databases and Tools for Phase-Transition Studies. Phase Transitions, 76(1-2), 155-170. doi:10.1080/0141159031000076110Loudon, R. (1964). The Raman effect in crystals. Advances in Physics, 13(52), 423-482. doi:10.1080/00018736400101051Alonso-Gutiérrez, P., & Sanjuán, M. L. (2008). Ordinary and extraordinary phonons and photons: Raman study of anisotropy effects in the polar modes ofMnGa2Se4. Physical Review B, 78(4). doi:10.1103/physrevb.78.045212Manjón, F. J., Marí, B., Serrano, J., & Romero, A. H. (2005). Silent Raman modes in zinc oxide and related nitrides. Journal of Applied Physics, 97(5), 053516. doi:10.1063/1.1856222Garbato, L., Ledda, F., & Rucci, A. (1987). Structural distortions and polymorphic behaviour in ABC2 and AB2C4 tetrahedral compounds. Progress in Crystal Growth and Characterization, 15(1), 1-41. doi:10.1016/0146-3535(87)90008-6Grzechnik, A., Ursaki, V. V., Syassen, K., Loa, I., Tiginyanu, I. M., & Hanfland, M. (2001). Pressure-Induced Phase Transitions in Cadmium Thiogallate CdGa2Se4. Journal of Solid State Chemistry, 160(1), 205-211. doi:10.1006/jssc.2001.9224Marquina, J., Power, C., Grima, P., Morocoima, M., Quintero, M., Couzinet, B., … González, J. (2006). Crystallographic properties of the MnGa2Se4 compound under high pressure. Journal of Applied Physics, 100(9), 093513. doi:10.1063/1.2358826Meenakshi, S., Vijayakumar, V., Eifler, A., & Hochheimer, H. D. (2010). Pressure-induced phase transition in defect Chalcopyrites HgAl2Se4 and CdAl2S4. Journal of Physics and Chemistry of Solids, 71(5), 832-835. doi:10.1016/j.jpcs.2010.02.007Gomis, O., Vilaplana, R., Manjón, F. J., Santamaría-Pérez, D., Errandonea, D., Pérez-González, E., … Ursaki, V. V. (2013). High-pressure study of the structural and elastic properties of defect-chalcopyrite HgGa2Se4. Journal of Applied Physics, 113(7), 073510. doi:10.1063/1.4792495Lowe-Ma, C. K., & Vanderah, T. A. (1991). Structure of ZnGa2S4, a defect sphalerite derivative. Acta Crystallographica Section C Crystal Structure Communications, 47(5), 919-924. doi:10.1107/s0108270190011192Roa, L., Chervin, J. C., Chevy, A., Davila, M., Grima, P., & Gonzáez, J. (1996). Optical Absorption and Raman Scattering Measurements in CuAlSe2 at High Pressure. physica status solidi (b), 198(1), 99-104. doi:10.1002/pssb.222198011
    • …
    corecore