236 research outputs found

    Compensation by tumor suppressor genes during retinal development in mice and humans

    Get PDF
    BACKGROUND: The RB1 gene was the first tumor suppressor gene cloned from humans by studying genetic lesions in families with retinoblastoma. Children who inherit one defective copy of the RB1 gene have an increased susceptibility to retinoblastoma. Several years after the identification of the human RB1 gene, a targeted deletion of Rb was generated in mice. Mice with one defective copy of the Rb gene do not develop retinoblastoma. In this manuscript, we explore the different roles of the Rb family in human and mouse retinal development in order to better understand the species-specific difference in retinoblastoma susceptibility. RESULTS: We found that the Rb family of proteins (Rb, p107 and p130) are expressed in a dynamic manner during mouse retinal development. The primary Rb family member expressed in proliferating embryonic retinal progenitor cells in mice is p107, which is required for appropriate cell cycle exit during retinogenesis. The primary Rb family member expressed in proliferating postnatal retinal progenitor cells is Rb. p130 protein is expressed redundantly with Rb in postmitotic cells of the inner nuclear layer and the ganglion cell layer of the mouse retina. When Rb is inactivated in an acute or chronic manner during mouse retinal development, p107 is upregulated in a compensatory manner. Similarly, when p107 is inactivated in the mouse retina, Rb is upregulated. No changes in p130 expression were seen when p107, Rb or both were inactivated in the developing mouse retina. In the human retina, RB1 was the primary family member expressed throughout development. There was very little if any p107 expressed in the developing human retina. In contrast to the developing mouse retina, when RB1 was acutely inactivated in the developing human fetal retina, p107 was not upregulated in a compensatory manner. CONCLUSION: We propose that intrinsic genetic compensation between Rb and p107 prevents retinoblastoma in Rb- or p107-deficient mice, but this compensation does not occur in humans. Together, these data suggest a model that explains why humans are susceptible to retinoblastoma following RB1 loss, but mice require both Rb and p107 gene inactivation

    Faces in Motion: Selectivity of Macaque and Human Face Processing Areas for Dynamic Stimuli

    Get PDF
    Face recognition mechanisms need to extract information from static and dynamic faces. It has been hypothesized that the analysis of dynamic face attributes is performed by different face areas than the analysis of static facial attributes. To date, there is no evidence for such a division of labor in macaque monkeys. We used fMRI to determine specializations of macaque face areas for motion. Face areas in the fundus of the superior temporal sulcus responded to general object motion; face areas outside of the superior temporal sulcus fundus responded more to facial motion than general object motion. Thus, the macaque face-processing system exhibits regional specialization for facial motion. Human face areas, processing the same stimuli, exhibited specializations for facial motion as well. Yet the spatial patterns of facial motion selectivity differed across species, suggesting that facial dynamics are analyzed differently in humans and macaques

    AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1

    Get PDF
    Damaged mitochondria are eliminated by mitophagy, a selective form of autophagy whose dysfunction associates with neurodegenerative diseases. PINK1, PARKIN and p62/SQTMS1 have been shown to regulate mitophagy, leaving hitherto ill-defined the contribution by key players in 'general' autophagy. In basal conditions, a pool of AMBRA1 - an upstream autophagy regulator and a PARKIN interactor - is present at the mitochondria, where its pro-autophagic activity is inhibited by Bcl-2. Here we show that, upon mitophagy induction, AMBRA1 binds the autophagosome adapter LC3 through a LIR (LC3 interacting region) motif, this interaction being crucial for regulating both canonical PARKIN-dependent and -independent mitochondrial clearance. Moreover, forcing AMBRA1 localization to the outer mitochondrial membrane unleashes a massive PARKIN- and p62-independent but LC3-dependent mitophagy. These results highlight a novel role for AMBRA1 as a powerful mitophagy regulator, through both canonical or noncanonical pathways

    Structure-Based Design of Non-Natural Amino Acid Inhibitors of Amyloid Fibrillation

    Get PDF
    Many globular and natively disordered proteins can convert into amyloid fibers. These fibers are associated with numerous pathologies1 as well as with normal cellular functions2,3, and frequently form during protein denaturation4,5. Inhibitors of pathological amyloid fibers could serve as leads for therapeutics, provided the inhibitors were specific enough to avoid interfering with normal processes. Here we show that computer-aided, structure-based design can yield highly specific peptide inhibitors of amyloid formation. Using known atomic structures of segments of amyloid fibers as templates, we have designed and characterized an all D-amino acid inhibitor of fibrillation of the tau protein found in Alzheimer’s disease, and a non-natural L-amino acid inhibitor of an amyloid fiber that enhances sexual transmission of HIV. Our results indicate that peptides from structure-based designs can disrupt the fibrillation of full-length proteins, including those like tau that lack fully ordered native structures.We thank M.I. Ivanova, J. Corn, T. Kortemme, D. Anderson, M.R. Sawaya, M. Phillips, S. Sambashivan, J. Park, M. Landau, Q. Zhang, R. Clubb, F. Guo, T. Yeates, J. Nowick, J. Zheng, and M.J. Thompson for discussions, HHMI, NIH, NSF, the GATES foundation, and the Joint Center for Translational Medicine for support, R. Peterson for help with NMR experiments, E. Mandelkow for providing tau constructs, R. Riek for providing amyloid beta, J. Stroud for amyloid beta preparation. Support for JK was from the Damon Runyon Cancer Research Foundation, for HWC by the Ruth L. Kirschstein National Research Service Award, for JM from the programme for junior-professors by the ministry of science, Baden-Württemberg, and for SAS by a UCLA-IGERT bioinformatics traineeship

    Three Repeat Isoforms of Tau Inhibit Assembly of Four Repeat Tau Filaments

    Get PDF
    Tauopathies are defined by assembly of the microtubule associated protein tau into filamentous tangles and classified by the predominant tau isoform within these aggregates. The major isoforms are determined by alternative mRNA splicing of exon 10 generating tau with three (3R) or four (4R) ∼32 amino acid imperfect repeats in the microtubule binding domain. In normal adult brains there is an approximately equimolar ratio of 3R and 4R tau which is altered by several disease-causing mutations in the tau gene. We hypothesized that when 4R and 3R tau isoforms are not at equimolar ratios aggregation is favored. Here we provide evidence for the first time that the combination of 3R and 4R tau isoforms results in less in vitro heparin induced polymerization than with 4R preparations alone. This effect was independent of reducing conditions and the presence of alternatively spliced exons 2 and 3 N-terminal inserts. The addition of even small amounts of 3R to 4R tau assembly reactions significantly decreased 4R assembly. Together these findings suggest that co-expression of 3R and 4R tau isoforms reduce tau filament assembly and that 3R tau isoforms inhibit 4R tau assembly. Expression of equimolar amounts of 3R and 4R tau in adult humans may be necessary to maintain proper neuronal microtubule dynamics and to prevent abnormal tau filament assembly. Importantly, these findings indicate that disruption of the normal equimolar 3R to 4R ratio may be sufficient to drive tau aggregation and that restoration of the tau isoform balance may have important therapeutic implications in tauopathies

    ISG15 Modulates Development of the Erythroid Lineage

    Get PDF
    Activation of erythropoietin receptor allows erythroblasts to generate erythrocytes. In a search for genes that are up-regulated during this differentiation process, we have identified ISG15 as being induced during late erythroid differentiation. ISG15 belongs to the ubiquitin-like protein family and is covalently linked to target proteins by the enzymes of the ISGylation machinery. Using both in vivo and in vitro differentiating erythroblasts, we show that expression of ISG15 as well as the ISGylation process related enzymes Ube1L, UbcM8 and Herc6 are induced during erythroid differentiation. Loss of ISG15 in mice results in decreased number of BFU-E/CFU-E in bone marrow, concomitant with an increased number of these cells in the spleen of these animals. ISG15-/- bone marrow and spleen-derived erythroblasts show a less differentiated phenotype both in vivo and in vitro, and over-expression of ISG15 in erythroblasts is found to facilitate erythroid differentiation. Furthermore, we have shown that important players of erythroid development, such as STAT5, Globin, PLC γ and ERK2 are ISGylated in erythroid cells. This establishes a new role for ISG15, besides its well-characterized anti-viral functions, during erythroid differentiation

    The Effect of a ΔK280 Mutation on the Unfolded State of a Microtubule-Binding Repeat in Tau

    Get PDF
    Tau is a natively unfolded protein that forms intracellular aggregates in the brains of patients with Alzheimer's disease. To decipher the mechanism underlying the formation of tau aggregates, we developed a novel approach for constructing models of natively unfolded proteins. The method, energy-minima mapping and weighting (EMW), samples local energy minima of subsequences within a natively unfolded protein and then constructs ensembles from these energetically favorable conformations that are consistent with a given set of experimental data. A unique feature of the method is that it does not strive to generate a single ensemble that represents the unfolded state. Instead we construct a number of candidate ensembles, each of which agrees with a given set of experimental constraints, and focus our analysis on local structural features that are present in all of the independently generated ensembles. Using EMW we generated ensembles that are consistent with chemical shift measurements obtained on tau constructs. Thirty models were constructed for the second microtubule binding repeat (MTBR2) in wild-type (WT) tau and a ΔK280 mutant, which is found in some forms of frontotemporal dementia. By focusing on structural features that are preserved across all ensembles, we find that the aggregation-initiating sequence, PHF6*, prefers an extended conformation in both the WT and ΔK280 sequences. In addition, we find that residue K280 can adopt a loop/turn conformation in WT MTBR2 and that deletion of this residue, which can adopt nonextended states, leads to an increase in locally extended conformations near the C-terminus of PHF6*. As an increased preference for extended states near the C-terminus of PHF6* may facilitate the propagation of β-structure downstream from PHF6*, these results explain how a deletion at position 280 can promote the formation of tau aggregates

    Structural Polymorphism of 441-Residue Tau at Single Residue Resolution

    Get PDF
    Alzheimer disease is characterized by abnormal protein deposits in the brain, such as extracellular amyloid plaques and intracellular neurofibrillary tangles. The tangles are made of a protein called tau comprising 441 residues in its longest isoform. Tau belongs to the class of natively unfolded proteins, binds to and stabilizes microtubules, and partially folds into an ordered β-structure during aggregation to Alzheimer paired helical filaments (PHFs). Here we show that it is possible to overcome the size limitations that have traditionally hampered detailed nuclear magnetic resonance (NMR) spectroscopy studies of such large nonglobular proteins. This is achieved using optimal NMR pulse sequences and matching of chemical shifts from smaller segments in a divide and conquer strategy. The methodology reveals that 441-residue tau is highly dynamic in solution with a distinct domain character and an intricate network of transient long-range contacts important for pathogenic aggregation. Moreover, the single-residue view provided by the NMR analysis reveals unique insights into the interaction of tau with microtubules. Our results establish that NMR spectroscopy can provide detailed insight into the structural polymorphism of very large nonglobular proteins

    Possible Existence of Lysosome-Like Organella within Mitochondria and Its Role in Mitochondrial Quality Control

    Get PDF
    The accumulation of unhealthy mitochondria results in mitochondrial dysfunction, which has been implicated in aging, cancer, and a variety of degenerative diseases. However, the mechanism by which mitochondrial quality is regulated remains unclear. Here, we show that Mieap, a novel p53-inducible protein, induces intramitochondrial lysosome-like organella that plays a critical role in mitochondrial quality control. Mieap expression is directly regulated by p53 and is frequently lost in human cancer as result of DNA methylation. Mieap dramatically induces the accumulation of lysosomal proteins within mitochondria and mitochondrial acidic condition without destroying the mitochondrial structure (designated MALM, for Mieap-induced accumulation of lysosome-like organelles within mitochondria) in response to mitochondrial damage. MALM was not related to canonical autophagy. MALM is involved in the degradation of oxidized mitochondrial proteins, leading to increased ATP synthesis and decreased reactive oxygen species generation. These results suggest that Mieap induces intramitochondrial lysosome-like organella that plays a critical role in mitochondrial quality control by eliminating oxidized mitochondrial proteins. Cancer cells might accumulate unhealthy mitochondria due to p53 mutations and/or Mieap methylation, representing a potential cause of the Warburg effect
    corecore