924 research outputs found

    Reconnections of Vortex Loops in the Superfluid Turbulent HeII. Rates of the Breakdown and Fusion processes

    Full text link
    Kinetics of merging and breaking down vortex loops is the important part of the whole vortex tangle dynamics. Another part is the motion of individual lines, which obeys the Biot-Savart law in presence of friction force and of applied external velocity fields if any. In the present work we evaluate the coefficients of the reconnection rates A(l1,l2,l)A(l_{1},l_{2},l) and B(l,l1,l2)B(l,l_{1},l_{2}). Quantity AA is a number (per unit of time and per unit of volume) of events, when two loops with lengths l1l_{1}and l2l_{2} collide and form the single loop of length l=l1+l2 l=l_{1}+l_{2}. Quantity % B(l,l_{1},l_{2}) describes the rate of events, when the single loop of the length ll breaks down into two the daughter loops of lengths l1 l_{1} and l2l_{2}. These quantities ave evaluated as the averaged numbers of zeroes of vector S\mathbf{S}%_{s}(\xi_{2},\xi_{1},t) connecting two points on the loops of ξ2\xi_{2} and ξ1 \xi_{1} at moment of time tt. Statistics of the individual loops is taken from the Gaussian model of vortex tangle. PACS-number 67.40Comment: 9 pages, 5 figures, To be submitted to JLT

    Evolution of a Network of Vortex Loops in the Turbulent Superfluid Helium; Derivation of the Vinen Equation

    Full text link
    The evolution a network of vortex loops due to the fusion and breakdown in the turbulent superfluid helium is studied. We perform investigation on the base of the "rate equation" for the distribution function n(l)n(l) of number of loops in space of their length ll. There are two mechanisms for change of quantity n(l)n(l). Firstly, the function changes due to deterministic process of mutual friction, when the length grows or decreases depending on orientation. Secondly, the change of n(l)n(l) occurs due to random events when the loop crosses itself breaking down into two daughter or two loops collide merging into one larger loop. Accordingly the "rate equation" includes the "collision" term collecting random processes of fusion and breakdown and the deterministic term. Assuming, further, that processes of random colliding are fastest we are in position to study more slow processes related to deterministic term. In this way we study the evolution of full length of vortex loops per unit volume-so called vortex line density L(t){\cal L}(t). It is shown this evolution to obey the famous Vinen equation. In conclusion we discuss properties of the Vinen equation from the point of view of the developed approach.Comment: Presentation at QFS2006, submitted to JLT

    Large-scale structure of time evolving citation networks

    Full text link
    In this paper we examine a number of methods for probing and understanding the large-scale structure of networks that evolve over time. We focus in particular on citation networks, networks of references between documents such as papers, patents, or court cases. We describe three different methods of analysis, one based on an expectation-maximization algorithm, one based on modularity optimization, and one based on eigenvector centrality. Using the network of citations between opinions of the United States Supreme Court as an example, we demonstrate how each of these methods can reveal significant structural divisions in the network, and how, ultimately, the combination of all three can help us develop a coherent overall picture of the network's shape.Comment: 10 pages, 6 figures; journal names for 4 references fixe

    Low thrust propulsion in a coplanar circular restricted four body problem

    Get PDF
    This paper formulates a circular restricted four body problem (CRFBP), where the three primaries are set in the stable Lagrangian equilateral triangle configuration and the fourth body is massless. The analysis of this autonomous coplanar CRFBP is undertaken, which identies eight natural equilibria; four of which are close to the smaller body, two stable and two unstable, when considering the primaries to be the Sun and two smaller bodies of the solar system. Following this, the model incorporates `near term' low-thrust propulsion capabilities to generate surfaces of articial equilibrium points close to the smaller primary, both in and out of the plane containing the celestial bodies. A stability analysis of these points is carried out and a stable subset of them is identied. Throughout the analysis the Sun-Jupiter-Asteroid-Spacecraft system is used, for conceivable masses of a hypothetical asteroid set at the libration point L4. It is shown that eight bounded orbits exist, which can be maintained with a constant thrust less than 1:5 10􀀀4N for a 1000kg spacecraft. This illustrates that, by exploiting low-thrust technologies, it would be possible to maintain an observation point more than 66% closer to the asteroid than that of a stable natural equilibrium point. The analysis then focusses on a major Jupiter Trojan: the 624-Hektor asteroid. The thrust required to enable close asteroid observation is determined in the simplied CRFBP model. Finally, a numerical simulation of the real Sun-Jupiter-624 Hektor-Spacecraft is undertaken, which tests the validity of the stability analysis of the simplied model

    Monte Carlo reconstruction of the inflationary potential

    Get PDF
    We present Monte Carlo reconstruction, a new method for ``inverting'' observational data to constrain the form of the scalar field potential responsible for inflation. This stochastic technique is based on the flow equation formalism and has distinct advantages over reconstruction methods based on a Taylor expansion of the potential. The primary ansatz required for Monte Carlo reconstruction is simply that inflation is driven by a single scalar field. We also require a very mild slow roll constraint, which can be made arbitrarily weak since Monte Carlo reconstruction is implemented at arbitrary order in the slow roll expansion. While our method cannot evade fundamental limits on the accuracy of reconstruction, it can be simply and consistently applied to poor data sets, and it takes advantage of the attractor properties of single-field inflation models to constrain the potential outside the small region directly probed by observations. We show examples of Monte Carlo reconstruction for data sets similar to that expected from the Planck satellite, and for a hypothetical measurement with a factor of five better parameter discrimination than Planck.Comment: 10 pages, 5 figures (RevTeX 4) Version submitted to PRD: references added, minor clarification

    Caloric Curves and Nuclear Expansion

    Get PDF
    Nuclear caloric curves have been analyzed using an expanding Fermi gas hypothesis to extract average nuclear densities. In this approach the observed flattening of the caloric curves reflects progressively increasing expansion with increasing excitation energy. This expansion results in a corresponding decrease in the density and Fermi energy of the excited system. For nuclei of medium to heavy mass apparent densities ~ 0.4 rho_0 are reached at the higher excitation energies.Comment: 4 pages, 3 figure

    Bayesian system identification of dynamical systems using highly informative training data

    Get PDF
    This paper is concerned with the Bayesian system identification of structural dynamical systems using experimentally obtained training data. It is motivated by situations where, from a large quantity of training data, one must select a subset to infer probabilistic models. To that end, using concepts from information theory, expressions are derived which allow one to approximate the effect that a set of training data will have on parameter uncertainty as well as the plausibility of candidate model structures. The usefulness of this concept is then demonstrated through the system identification of several dynamical systems using both physics-based and emulator models. The result is a rigorous scientific framework which can be used to select 'highly informative' subsets from large quantities of training data

    Inflation with a constant ratio of scalar and tensor perturbation amplitudes

    Get PDF
    The single scalar field inflationary models that lead to scalar and tensor perturbation spectra with amplitudes varying in direct proportion to one another are reconstructed by solving the Stewart-Lyth inverse problem to next-to-leading order in the slow-roll approximation. The potentials asymptote at high energies to an exponential form, corresponding to power law inflation, but diverge from this model at low energies, indicating that power law inflation is a repellor in this case. This feature implies that a fine-tuning of initial conditions is required if such models are to reproduce the observations. The required initial conditions might be set through the eternal inflation mechanism. If this is the case, it will imply that the spectral indices must be nearly constant, making the underlying model observationally indistinguishable from power law inflation.Comment: 20 pages, 7 figures. Major changes to the Introduction following referee's comments. One figure added. Some other minor changes. No conclusion was modifie

    Lemaitre-Tolman-Bondi model and accelerating expansion

    Full text link
    I discuss the spherically symmetric but inhomogeneous Lemaitre-Tolman- Bondi (LTB) metric, which provides an exact toy model for an inhomogeneous universe. Since we observe light rays from the past light cone, not the expansion of the universe, spatial variation in matter density and Hubble rate can have the same effect on redshift as acceleration in a perfectly homogeneous universe. As a consequence, a simple spatial variation in the Hubble rate can account for the distant supernova data in a dust universe without any dark energy. I also review various attempts towards a semirealistic description of the universe based on the LTB model.Comment: Invited Review for a special Gen. Rel. Grav. issue on Dark Energy. 17 pages, 3 figure
    • …
    corecore