35 research outputs found

    Linear approaches to intramolecular Förster Resonance Energy Transfer probe measurements for quantitative modeling

    Get PDF
    Numerous unimolecular, genetically-encoded Forster Resonance Energy Transfer (FRET) probes for monitoring biochemical activities in live cells have been developed over the past decade. As these probes allow for collection of high frequency, spatially resolved data on signaling events in live cells and tissues, they are an attractive technology for obtaining data to develop quantitative, mathematical models of spatiotemporal signaling dynamics. However, to be useful for such purposes the observed FRET from such probes should be related to a biological quantity of interest through a defined mathematical relationship, which is straightforward when this relationship is linear, and can be difficult otherwise. First, we show that only in rare circumstances is the observed FRET linearly proportional to a biochemical activity. Therefore in most cases FRET measurements should only be compared either to explicitly modeled probes or to concentrations of products of the biochemical activity, but not to activities themselves. Importantly, we find that FRET measured by standard intensity-based, ratiometric methods is inherently non-linear with respect to the fraction of probes undergoing FRET. Alternatively, we find that quantifying FRET either via (1) fluorescence lifetime imaging (FLIM) or (2) ratiometric methods where the donor emission intensity is divided by the directly-excited acceptor emission intensity (denoted R<sub>alt</sub>) is linear with respect to the fraction of probes undergoing FRET. This linearity property allows one to calculate the fraction of active probes based on the FRET measurement. Thus, our results suggest that either FLIM or ratiometric methods based on R<sub>alt</sub> are the preferred techniques for obtaining quantitative data from FRET probe experiments for mathematical modeling purpose

    Intravital FRAP imaging using an E-cadherin-GFP mouse reveals disease- and drug-dependent dynamic regulation of cell-cell junctions in live tissue

    Get PDF
    E-cadherin-mediated cell-cell junctions play a prominent role in maintaining the epithelial architecture. The disruption or deregulation of these adhesions in cancer can lead to the collapse of tumor epithelia that precedes invasion and subsequent metastasis. Here we generated an E-cadherin-GFP mouse that enables intravital photobleaching and quantification of E-cadherin mobility in live tissue without affecting normal biology. We demonstrate the broad applications of this mouse by examining E-cadherin regulation in multiple tissues, including mammary, brain, liver, and kidney tissue, while specifically monitoring E-cadherin mobility during disease progression in the pancreas. We assess E-cadherin stability in native pancreatic tissue upon genetic manipulation involving Kras and p53 or in response to anti-invasive drug treatment and gain insights into the dynamic remodeling of E-cadherin during in situ cancer progression. FRAP in the E-cadherin-GFP mouse, therefore, promises to be a valuable tool to fundamentally expand our understanding of E-cadherin-mediated events in native microenvironments

    Cosmological Backreaction from Perturbations

    Full text link
    We reformulate the averaged Einstein equations in a form suitable for use with Newtonian gauge linear perturbation theory and track the size of the modifications to standard Robertson-Walker evolution on the largest scales as a function of redshift for both Einstein de-Sitter and Lambda CDM cosmologies. In both cases the effective energy density arising from linear perturbations is of the order of 10^-5 the matter density, as would be expected, with an effective equation of state w ~ -1/19. Employing a modified Halofit code to extend our results to quasilinear scales, we find that, while larger, the deviations from Robertson-Walker behaviour remain of the order of 10^-5.Comment: 15 pages, 8 figures; replaced by version accepted by JCA

    Neuropilin-1/GIPC1 Signaling Regulates α5β1 Integrin Traffic and Function in Endothelial Cells

    Get PDF
    Neuropilin 1 (Nrp1) is a coreceptor for vascular endothelial growth factor A165 (VEGF-A165, VEGF-A164 in mice) and semaphorin 3A (SEMA3A). Nevertheless, Nrp1 null embryos display vascular defects that differ from those of mice lacking either VEGF-A164 or Sema3A proteins. Furthermore, it has been recently reported that Nrp1 is required for endothelial cell (EC) response to both VEGF-A165 and VEGF-A121 isoforms, the latter being incapable of binding Nrp1 on the EC surface. Taken together, these data suggest that the vascular phenotype caused by the loss of Nrp1 could be due to a VEGF-A164/SEMA3A-independent function of Nrp1 in ECs, such as adhesion to the extracellular matrix. By using RNA interference and rescue with wild-type and mutant constructs, we show here that Nrp1 through its cytoplasmic SEA motif and independently of VEGF-A165 and SEMA3A specifically promotes α5β1-integrin-mediated EC adhesion to fibronectin that is crucial for vascular development. We provide evidence that Nrp1, while not directly mediating cell spreading on fibronectin, interacts with α5β1 at adhesion sites. Binding of the homomultimeric endocytic adaptor GAIP interacting protein C terminus, member 1 (GIPC1), to the SEA motif of Nrp1 selectively stimulates the internalization of active α5β1 in Rab5-positive early endosomes. Accordingly, GIPC1, which also interacts with α5β1, and the associated motor myosin VI (Myo6) support active α5β1 endocytosis and EC adhesion to fibronectin. In conclusion, we propose that Nrp1, in addition to and independently of its role as coreceptor for VEGF-A165 and SEMA3A, stimulates through its cytoplasmic domain the spreading of ECs on fibronectin by increasing the Rab5/GIPC1/Myo6-dependent internalization of active α5β1. Nrp1 modulation of α5β1 integrin function can play a causal role in the generation of angiogenesis defects observed in Nrp1 null mice

    A RhoA-FRET Biosensor Mouse for Intravital Imaging in Normal Tissue Homeostasis and Disease Contexts.

    Get PDF
    The small GTPase RhoA is involved in a variety of fundamental processes in normal tissue. Spatiotemporal control of RhoA is thought to govern mechanosensing, growth, and motility of cells, while its deregulation is associated with disease development. Here, we describe the generation of a RhoA-fluorescence resonance energy transfer (FRET) biosensor mouse and its utility for monitoring real-time activity of RhoA in a variety of native tissues in vivo. We assess changes in RhoA activity during mechanosensing of osteocytes within the bone and during neutrophil migration. We also demonstrate spatiotemporal order of RhoA activity within crypt cells of the small intestine and during different stages of mammary gestation. Subsequently, we reveal co-option of RhoA activity in both invasive breast and pancreatic cancers, and we assess drug targeting in these disease settings, illustrating the potential for utilizing this mouse to study RhoA activity in vivo in real time

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    TRiC/CCT cooperates with different upstream chaperones in the folding of distinct protein classes

    No full text
    The role in protein folding of the eukaryotic chaperonin TRiC/CCT is only partially understood. Here, we show that a group of WD40 β-propeller proteins in the yeast cytosol interact transiently with TRiC upon synthesis and require the chaperonin to reach their native state. TRiC cooperates in the folding of these proteins with the ribosome-associated heat shock protein (Hsp)70 chaperones Ssb1/2p. In contrast, newly synthesized actin and tubulins, the major known client proteins of TRiC, are independent of Ssb1/2p and instead use the co-chaperone GimC/prefoldin for efficient transfer to the chaperonin. GimC can replace Ssb1/2p in the folding of WD40 substrates such as Cdc55p, but combined deletion of SSB and GIM genes results in loss of viability. These findings expand the substrate range of the eukaryotic chaperonin by a structurally defined class of proteins and demonstrate an essential role for upstream chaperones in TRiC-assisted folding

    L25 functions as a conserved ribosomal docking site shared by nascent chain-associated complex and signal-recognition particle

    No full text
    The nascent chain-associated complex (NAC) is a dimeric protein complex of archaea and eukarya that interacts with ribosomes and translating polypeptide chains. We show that, in yeast, NAC and the signal-recognition particle (SRP) share the universally conserved ribosomal protein L25 as a docking site, which is in close proximity to the ribosomal exit tunnel. The amino-terminal segment of β-NAC was found to be required for L25 binding. Purified NAC can prevent protein aggregation in vitro and thus shows certain properties of a molecular chaperone. Interestingly, the α-subunit of NAC interacts with the 54 kDa subunit of SRP. Consistent with a regulatory role of NAC in protein translocation into the endoplasmic reticulum (ER), we find that deletion of NAC results in an induction of the ER stress-response pathway. These results identify L25 as a conserved interaction platform for specific cytosolic factors that guide nascent polypeptides to their proper cellular destination
    corecore