129 research outputs found

    Editorial: Integrated weed management for reduced weed infestations in sustainable cropping systems

    Get PDF
    International audienceWeeds are a major biotic constraint of agricultural systems worldwide interfering with crop production and resource use efficiency (Oerke, 2006; Colbach et al., 2020). Chemical control is a cost-and time-effective weed management method and for that reason remains as the most widely and frequently used method to sustain agricultural productivity and food security in the current era. However, repeated use of a limited number of herbicide active ingredients in non-diversified crop rotations enhances the selection of herbicide-resistant weed biotypes. The over-reliance on chemical weed control has led to shifts in weed communities (Mahaut et al., 2019) which are now becoming dominated by highly competitive and herbicide-resistant prone species able to cause significant yield losses (Adeux et al., 2019b). Widespread herbicide resistance (Heap, 2023) accompanied by the increasing concern of herbicides entering the food chain and/or impacting the environment has created a tremendous demand for alternative weed management methods. Alternative weed management practices that reduce weed populations indirectly lowers selection pressure thus helping delay the evolution of further herbicide resistance. Controlling weeds during the critical period of weed removal is paramount for achieving the full yield potential of any crop (Zimdahl, 1988; Colbach et al., 2020). In conservation tillage with cover cropping, research on the critical period of weed removal is warranted to further elucidate cover crop weed suppressive attributes and efficient utilization of herbicides (Kumari et al.). Preventive weed control measures include all the possible means that restrict the entry and establishment of weeds in an area. Cultural control is an ecological method of weed control in which good crop management methods are followed to stimulate rapid crop growth and canopy closure (Petit et al., 2018). Cultivar selection, Frontiers in Agronomy frontiersin.org 0

    QJM

    Get PDF
    International audienceno abstrac

    Seed-shattering phenology at soybean harvest of economically important weeds in multiple regions of the United States. Part 3: Drivers of seed shatter

    Get PDF
    Seed retention, and ultimately seed shatter, are extremely important for the efficacy of harvest weed seed control (HWSC) and are likely influenced by various agroecological and environmental factors. Field studies investigated seed-shattering phenology of 22 weed species across three soybean [Glycine max (L.) Merr.]-producing regions in the United States. We further evaluated the potential drivers of seed shatter in terms of weather conditions, growing degree days, and plant biomass. Based on the results, weather conditions had no consistent impact on weed seed shatter. However, there was a positive correlation between individual weed plant biomass and delayed weed seed-shattering rates during harvest. This work demonstrates that HWSC can potentially reduce weed seedbank inputs of plants that have escaped early-season management practices and retained seed through harvest. However, smaller individuals of plants within the same population that shatter seed before harvest pose a risk of escaping early-season management and HWSC

    Seed-shattering phenology at soybean harvest of economically important weeds in multiple regions of the United States. Part 1: Broadleaf species

    Get PDF
    Potential effectiveness of harvest weed seed control (HWSC) systems depends upon seed shatter of the target weed species at crop maturity, enabling its collection and processing at crop harvest. However, seed retention likely is influenced by agroecological and environmental factors. In 2016 and 2017, we assessed seed-shatter phenology in 13 economically important broadleaf weed species in soybean [Glycine max (L.) Merr.] from crop physiological maturity to 4 wk after physiological maturity at multiple sites spread across 14 states in the southern, northern, and mid-Atlantic United States. Greater proportions of seeds were retained by weeds in southern latitudes and shatter rate increased at northern latitudes. Amaranthus spp. seed shatter was low (0% to 2%), whereas shatter varied widely in common ragweed (Ambrosia artemisiifolia L.) (2% to 90%) over the weeks following soybean physiological maturity. Overall, the broadleaf species studied shattered less than 10% of their seeds by soybean harvest. Our results suggest that some of the broadleaf species with greater seed retention rates in the weeks following soybean physiological maturity may be good candidates for HWSC

    Seed-shattering phenology at soybean harvest of economically important weeds in multiple regions of the United States. Part 2: Grass species

    Get PDF
    Seed shatter is an important weediness trait on which the efficacy of harvest weed seed control (HWSC) depends. The level of seed shatter in a species is likely influenced by agroecological and environmental factors. In 2016 and 2017, we assessed seed shatter of eight economically important grass weed species in soybean [Glycine max (L.) Merr.] from crop physiological maturity to 4 wk after maturity at multiple sites spread across 11 states in the southern, northern, and mid-Atlantic United States. From soybean maturity to 4 wk after maturity, cumulative percent seed shatter was lowest in the southern U.S. regions and increased moving north through the states. At soybean maturity, the percent of seed shatter ranged from 1% to 70%. That range had shifted to 5% to 100% (mean: 42%) by 25 d after soybean maturity. There were considerable differences in seed-shatter onset and rate of progression between sites and years in some species that could impact their susceptibility to HWSC. Our results suggest that many summer annual grass species are likely not ideal candidates for HWSC, although HWSC could substantially reduce their seed output during certain years

    Estimating Receptive Fields from Responses to Natural Stimuli with Asymmetric Intensity Distributions

    Get PDF
    The reasons for using natural stimuli to study sensory function are quickly mounting, as recent studies have revealed important differences in neural responses to natural and artificial stimuli. However, natural stimuli typically contain strong correlations and are spherically asymmetric (i.e. stimulus intensities are not symmetrically distributed around the mean), and these statistical complexities can bias receptive field (RF) estimates when standard techniques such as spike-triggered averaging or reverse correlation are used. While a number of approaches have been developed to explicitly correct the bias due to stimulus correlations, there is no complementary technique to correct the bias due to stimulus asymmetries. Here, we develop a method for RF estimation that corrects reverse correlation RF estimates for the spherical asymmetries present in natural stimuli. Using simulated neural responses, we demonstrate how stimulus asymmetries can bias reverse-correlation RF estimates (even for uncorrelated stimuli) and illustrate how this bias can be removed by explicit correction. We demonstrate the utility of the asymmetry correction method under experimental conditions by estimating RFs from the responses of retinal ganglion cells to natural stimuli and using these RFs to predict responses to novel stimuli

    Comparison of Hepatic-like Cell Production from Human Embryonic Stem Cells and Adult Liver Progenitor Cells: CAR Transduction Activates a Battery of Detoxification Genes

    Get PDF
    In vitro production of human hepatocytes is of primary importance in basic research, pharmacotoxicology and biotherapy of liver diseases. We have developed a protocol of differentiation of human embryonic stem cells (ES) towards hepatocyte-like cells (ES-Hep). Using a set of human adult markers including CAAT/enhancer binding protein (C/EBPalpha), hepatocyte nuclear factor 4/7 ratio (HNF4alpha1/HNF4alpha7), cytochrome P450 7A1 (CYP7A1), CYP3A4 and constitutive androstane receptor (CAR), and fetal markers including alpha-fetoprotein, CYP3A7 and glutathione S-transferase P1, we analyzed the expression of a panel of 41 genes in ES-Hep comparatively with human adult primary hepatocytes, adult and fetal liver. The data revealed that after 21 days of differentiation, ES-Hep are representative of fetal hepatocytes at less than 20 weeks of gestation. The glucocorticoid receptor pathway was functional in ES-Hep. Extending protocols of differentiation to 4 weeks did not improve cell maturation. When compared with hepatocyte-like cells derived from adult liver non parenchymal epithelial (NPE) cells (NPE-Hep), ES-Hep expressed several adult and fetal liver makers at much greater levels (at least one order of magnitude), consistent with greater expression of liver-enriched transcription factors Forkhead box A2, C/EBPalpha, HNF4alpha and HNF6. It therefore seems that ES-Hep reach a better level of differentiation than NPE-Hep and that these cells use different lineage pathways towards the hepatic phenotype. Finally we showed that lentivirus-mediated expression of xenoreceptor CAR in ES-Hep induced the expression of several detoxification genes including CYP2B6, CYP2C9, CYP3A4, UDP-glycosyltransferase 1A1, solute carriers 21A6, as well as biotransformation of midazolam, a CYP3A4-specific substrate

    Stochastic Differential Systems with Memory: Theory, Examples and Applications

    Get PDF
    The purpose of this article is to introduce the reader to certain aspects of stochastic differential systems, whose evolution depends on the past history of the state. Chapter I begins with simple motivating examples. These include the noisy feedback loop, the logistic time-lag model with Gaussian noise , and the classical ``heat-bath model of R. Kubo , modeling the motion of a ``large molecule in a viscous fluid. These examples are embedded in a general class of stochastic functional differential equations (sfde\u27s). We then establish pathwise existence and uniqueness of solutions to these classes of sfde\u27s under local Lipschitz and linear growth hypotheses on the coefficients. It is interesting to note that the above class of sfde\u27s is not covered by classical results of Protter, Metivier and Pellaumail and Doleans-Dade. In Chapter II, we prove that the Markov (Feller) property holds for the trajectory random field of a sfde. The trajectory Markov semigroup is not strongly continuous for positive delays, and its domain of strong continuity does not contain tame (or cylinder) functions with evaluations away from zero. To overcome this difficulty, we introduce a class of quasitame functions. These belong to the domain of the weak infinitesimal generator, are weakly dense in the underlying space of continuous functions and generate the Borel σ\sigma-algebra of the state space. This chapter also contains a derivation of a formula for the weak infinitesimal generator of the semigroup for sufficiently regular functions, and for a large class of quasitame functions. In Chapter III, we study pathwise regularity of the trajectory random field in the time variable and in the initial path. Of note here is the non-existence of the stochastic flow for the singular sdde dx(t)=x(t−r)dW(t)dx(t)= x(t-r) dW(t) and a breakdown of linearity and local boundedness. This phenomenon is peculiar to stochastic delay equations. It leads naturally to a classification of sfde\u27s into regular and singular types. Necessary and sufficient conditions for regularity are not known. The rest of Chapter III is devoted to results on sufficient conditions for regularity of linear systems driven by white noise or semimartingales, and Sussman-Doss type nonlinear sfde\u27s. Building on the existence of a compacting stochastic flow, we develop a multiplicative ergodic theory for regular linear sfde\u27s driven by white noise, or general helix semimartingales (Chapter IV). In particular, we prove a Stable Manifold Theorem for such systems. In Chapter V, we seek asymptotic stability for various examples of one-dimensional linear sfde\u27s. Our approach is to obtain upper and lower estimates for the top Lyapunov exponent. Several topics are discussed in Chapter VI. These include the existence of smooth densities for solutions of sfde\u27s using the Malliavin calculus, an approximation technique for multidimensional diffusions using sdde\u27s with small delays, and affine sfde\u27s

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
    • …
    corecore