19,217 research outputs found

    One-dimensional description of a Bose-Einstein condensate in a rotating closed-loop waveguide

    Full text link
    We propose a general procedure for reducing the three-dimensional Schrodinger equation for atoms moving along a strongly confining atomic waveguide to an effective one-dimensional equation. This procedure is applied to the case of a rotating closed-loop waveguide. The possibility of including mean-field atomic interactions is presented. Application of the general theory to characterize a new concept of atomic waveguide based on optical tweezers is finally discussed

    Generalized Supersymmetric Perturbation Theory

    Full text link
    Using the basic ingredient of supersymmetry, we develop a simple alternative approach to perturbation theory in one-dimensional non-relativistic quantum mechanics. The formulae for the energy shifts and wave functions do not involve tedious calculations which appear in the available perturbation theories. The model applicable in the same form to both the ground state and excited bound states, unlike the recently introduced supersymmetric perturbation technique which, together with other approaches based on logarithmic perturbation theory, are involved within the more general framework of the present formalism.Comment: 13 pages article in LaTEX (uses standard article.sty). No Figures. Sent to Ann. Physics (2004

    Effect of trap symmetry and atom-atom interactions on a trapped atom interferometer with internal state labelling

    Full text link
    In this paper, we study the dynamics of a trapped atom interferometer with internal state labelling in the presence of interactions. We consider two situations: an atomic clock in which the internal states remain superposed, and an inertial sensor configuration in which they are separated. From the average spin evolution, we deduce the fringe contrast and the phase-shift. In the clock configuration, we recover the well-known identical spin rotation effect (ISRE) which can significantly increase the spin coherence time. We also find that the magnitude of the effect depends on the trap geometry in a way that is consistent with our recent experimental results in a clock configuration [M. Dupont-Nivet, and al., New J. Phys., 20, 043051 (2018)], where ISRE was not observed. In the case of an inertial sensor, we show that despite the spatial separation it is still possible to increase the coherence time by using mean field interactions to counteract asymmetries of the trapping potential.Comment: 18 pages, 5 figure

    EOS MLS observations of dehydration in the 2004-2005 polar winters

    Get PDF
    We prove various estimates for the first eigenvalue of the magnetic Dirichlet Laplacian on a bounded domain in two dimensions. When the magnetic field is constant, we give lower and upper bounds in terms of geometric quantities of the domain. We furthermore prove a lower bound for the first magnetic Neumann eigenvalue in the case of constant field.Comment: 19 page

    Local formation of nitrogen-vacancy centers in diamond by swift heavy ions

    Full text link
    We exposed nitrogen-implanted diamonds to beams of swift uranium and gold ions (~1 GeV) and find that these irradiations lead directly to the formation of nitrogen vacancy (NV) centers, without thermal annealing. We compare the photoluminescence intensities of swift heavy ion activated NV- centers to those formed by irradiation with low-energy electrons and by thermal annealing. NV- yields from irradiations with swift heavy ions are 0.1 of yields from low energy electrons and 0.02 of yields from thermal annealing. We discuss possible mechanisms of NV-center formation by swift heavy ions such as electronic excitations and thermal spikes. While forming NV centers with low efficiency, swift heavy ions enable the formation of three dimensional NV- assemblies over relatively large distances of tens of micrometers. Further, our results show that NV-center formation is a local probe of (partial) lattice damage relaxation induced by electronic excitations from swift heavy ions in diamond.Comment: to be published in Journal of Applied Physic

    The Algebras of Large N Matrix Mechanics

    Get PDF
    Extending early work, we formulate the large N matrix mechanics of general bosonic, fermionic and supersymmetric matrix models, including Matrix theory: The Hamiltonian framework of large N matrix mechanics provides a natural setting in which to study the algebras of the large N limit, including (reduced) Lie algebras, (reduced) supersymmetry algebras and free algebras. We find in particular a broad array of new free algebras which we call symmetric Cuntz algebras, interacting symmetric Cuntz algebras, symmetric Bose/Fermi/Cuntz algebras and symmetric Cuntz superalgebras, and we discuss the role of these algebras in solving the large N theory. Most important, the interacting Cuntz algebras are associated to a set of new (hidden) local quantities which are generically conserved only at large N. A number of other new large N phenomena are also observed, including the intrinsic nonlocality of the (reduced) trace class operators of the theory and a closely related large N field identification phenomenon which is associated to another set (this time nonlocal) of new conserved quantities at large N.Comment: 70 pages, expanded historical remark

    Revisiting the exercise heart rate-music tempo preference relationship

    Get PDF
    In the present study, we investigated a hypothesized quartic relationship (meaning three inflection points) between exercise heart rate (HR) and preferred music tempo. Initial theoretical predictions suggested a positive linear relationship (Iwanaga, 1995a, 1995b); however, recent experimental work has shown that as exercise HR increases, step changes and plateaus that punctuate the profile of music tempo preference may occur (Karageorghis, Jones, & Stuart, 2008). Tempi bands consisted of slow (95–100 bpm), medium (115–120 bpm), fast (135–140 bpm), and very fast (155–160 bpm) music. Twenty-eight active undergraduate students cycled at exercise intensities representing 40, 50, 60, 70, 80, and 90% of their maximal HR reserve while their music preference was assessed using a 10-point scale. The Exercise Intensity x Music Tempo interaction was significant, F(6.16, 160.05) = 7.08, p < .001, ηp 2 =.21, as was the test for both cubic and quartic trajectories in the exercise HR–preferred-music-tempo relationship (p < .001). Whereas slow tempo music was not preferred at any exercise intensity, preference for fast tempo increased, relative to medium and very fast tempo music, as exercise intensity increased. The implications for the prescription of music in exercise and physical activity contexts are discussed

    Random Walks in Local Dynamics of Network Losses

    Get PDF
    We suggest a model for data losses in a single node of a packet-switched network (like the Internet) which reduces to one-dimensional discrete random walks with unusual boundary conditions. The model shows critical behavior with an abrupt transition from exponentially small to finite losses as the data arrival rate increases. The critical point is characterized by strong fluctuations of the loss rate. Although we consider the packet arrival being a Markovian process, the loss rate exhibits non-Markovian power-law correlations in time at the critical point.Comment: 4 pages, 2 figure
    • 

    corecore