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We suggest a model for data losses in a single node of a packet-switched network (like the Internet)
which reduces to one-dimensional discrete random walks with unusual boundary conditions. The
model shows critical behavior with an abrupt transition from exponentially small to finite losses
as the data arrival rate increases. The critical point is characterized by strong fluctuations of the
loss rate. Although we consider the packet arrival being a Markovian process, the loss rate exhibits
non-Markovian power-law correlations in time at the critical point.
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Many systems, both natural and man-made are or-
ganized as complex networks of interconnected entities:
brain cells [1l], interacting molecules in living cells [J],
multi-species food webs é], social networks @] and the
Internet ﬂa] are just a few examples. In addition to the
classical Erdoés-Rényi model for random networks [d],
new overarching models of scale-free ﬂ] or small-world
E] networks turn out to be describe real world examples.
These and other network models have received extensive
attention by physicists (see Refs. [d, [1d] for reviews).

One of particularly interesting problems for a wide
range of complex networks is their resiliency to break-
downs. The possibility of random or intentional break-
downs of the entire network has been considered in the
context of scale-free networks where nodes were randomly
or selectively removed m, E, E], or in the context of
small-world networks where a random reduction in the
sites connectivity leads to a sharp increase in the op-
timal distance across network which destroys its small-
world nature ﬂﬁ, m, E] In all these models, the site or
bond disorder acts as an input which makes them very
general and applicable to a wide variety of networks.

Network breakdowns can result not only from a physi-
cal loss of connectivity but from an operational failure of
some network nodes to forward data. In the more spe-
cific class of communication networks, this could happen
due to excessive loading of a single node. This could
trigger cascades of failures and thus isolate large parts
of the network ﬂm] In describing the operational failure
in a particular network node, one needs to account for
distinct features of the dynamically ‘random’ data traffic
which can be a reason for such a breakdown.

In this Letter we model data losses in a single node of
a packet-switched network like the Internet. We demon-
strate that such losses may have critical behavior with
an abrupt transition from an exponentially small to fi-
nite loss rate as the data arrival rate increases. At the
critical point the loss rate exhibits strong fluctuations
which only become Gaussian in the (unrealistically) long
time limit. Although we model data arrivals as a Marko-
vian process, the loss rate at intermediate times shows

long-range power-law correlations in time. When exces-
sive data losses start, it is more probable that they persist
for a while, thus impacting on network operation.

There are two distinct features which must be pre-
served in modelling data losses in a packet-switched net-
work: a discrete character of data propagation and the
possibility of data overflow in a single node. In such a
network, data is divided into packets which are routed
from source to destination via a set of interconnected
nodes (routers). At each node packets are queued in a
memory buffer before being served, i.e. forwarded to the
next node. (There are separate buffers for incoming and
outgoing packets but we neglect this for the sake of sim-
plicity). Due to the finite capacity of memory buffers
and the stochastic nature of data traffic, any buffer can
become overflown which results in discarded packets.

In the model we suggest here data losses in a single
memory buffer start when the average rate of random
packets arrival exceeds the service rate. In such a model
the transition from free flow to lossy behavior is, on av-
erage, very steep: when the arrival rate exceeds a certain
threshold, the buffer becomes full and a finite fraction
of arriving packets is dropped. Such a sharp onset of
network congestion is familiar to everyone using the In-
ternet and was numerically confirmed in different mod-
els ﬂﬂ] Here we stress two characteristic consequences
of the model considered which would be preserved in
any realistic model allowing for the discrete data prop-
agation and finite capacity of the nodes: (i) congestion
can originate from a single node and (ii) loss rate statis-
tics turns out to be highly nontrivial. The latter makes
present considerations qualitatively different from, e.g.,
bulk queue models which have been extensively studied
before ﬂﬂ, E] but considered loss rate only on average.
Although fluctuations in network dynamics were stud-
ied in h], this was done in a continuous limit for the
data traffic. In our model there is a more close analogy
with mesoscopic physics where, e.g., the electron density
of states in disordered conductors is, on average, a con-
stant, but its fluctuations are rather nontrivial, either
globally or locally M]
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FIG. 1: The model of data losses: incoming packets randomly
arrive in discrete time intervals and join the queue of length ¢
limited by the memory buffer capacity L. Packets in front of
the queue are served at the same time intervals. If the queue
reaches the “boundary” (the buffer is full), newly arriving
packets are discarded.

We consider the model of randomly arriving packets
which form a queue in the buffer and are served at regu-
lar, discrete time intervals. The length of the queue after
n service intervals, £,, serves as a dynamical variable. The
random arrival is modelled as a telegraph noise described
by the discrete-time Langevin equation,

gn—i—l = En + gn P (1)

where the simplest model for noise &, is built by assum-
ing that all incoming packets are of the same length and
arrive one by one at each service interval with probability
p. We further assume that one half of a packet is served
at each interval on a first-come first-served basis. Let L
be the buffer capacity, i.e. the maximal number of service
units (half-packets) in the queue. This gives

1, 0</(, <L-1
sn—{Q o=k 2)

with probability p, and

0, ¢,=0,

with probability 1 — p. The meaning of the above condi-
tions is that either the length of the queue increases by
one service unit when one packet arrives and one service
unit is served, or decreases by one when no new packet ar-
rives. The approximate boundary conditions above cor-
respond to discarding a newly arrived packet when buffer
is full (¢, = L) and an idle interval when no packet ar-
rives at an empty buffer (¢,, = 0). We show at the end
of the Letter that more accurate boundary conditions do
not change the asymptotic form of our results.

The main quantity which characterizes congestion is
the packet loss rate which is defined via the number of
packets discarded during a time interval N by

no+N
Ly(no)= Y 0e,00,1 (4)

n=no+1

The meaning of this definition is that the arriving packet
is discarded when by the moment of arrival the queue
was at the maximal capacity L as illustrated in Fig. [l
Thus the continuous limit cannot be exploited for this
problem which makes the loss statistics profoundly dif-
ferent from, e.g., the thoroughly studied statistics of first-
passage time [22]. We will find the average and the vari-
ance of the loss rate defined above. Although the arrival
of packets defined by the Langevin dynamics of Eqs. ([{Il)-
@) is a Markovian process, we will show that the loss rate
dynamics turns out to be non-Markovian in the critical
regime. The reason for this is that the loss rate (@) is de-
fined entirely by the process occurring at the boundary
of the random walk (RW).

We will express the quantities of interest via the condi-
tional probability of the queue being of length ¢ at time
n provided that it was of length ¢’ at time ny,

Grono (0, 0)) = (80,0 00,,.00) | (Benyt)

where (...) stand for the averaging over the telegraph
noise of Egs. (@) - @). The stationary distribution of the
queue length is related to G by

Ps(l) = lim Gypno(€, ") = (00, .0) - (5)

nog——00
On averaging the loss rate, Eq. (@), we thus obtain
<‘CN> :PSt(L)Ngl(LvL)a (6)
while its variance is given by

no+N

(La)y = >

n,m=ngp+1

= (Ln) + 2P (L)GF (L, L) Y Gm-n-1(L,L).  (7)

n<m

(06,,,00¢,41,L0¢,,,000,,41,L)

To calculate G (which is non-trivial due to the bound-
ary conditions of Egs. @) and (@), we note that it is the
Green’s function of the Focker-Planck equation (FPE)
corresponding to the Langevin equation ([{Il). The FPE
can be written in terms of the probability P, (¢) for the
queue being of length ¢ at time n as

Posi(0) =Y weoPu(l), 0<LO<L.  (8)
Zl

The transition matrix @ with elements wy ¢ correspond-
ing to Egs. )@l is given by

wer = pop—1,e0+ (1 =p) 1, 0<L<L, (9)

with the boundary conditions

(1=p)(do,0 +61,0), £=0
p(0r—1,00 +6r,0), {=1L

e = ( J =L )
(1=p)oeo+pdea, /=0

(1—=p)o¢, -1 +poe,r, ' =L



Eqgs. @)-@) describe a usual biased discrete-time RW
on a one-dimensional lattice [22]. However, both the
quantity to calculate, Eq. @), and the boundary con-
ditions, Eq. (), make the problem under consideration
profoundly different from those in [22].

Egs. @ — ([ are clearly non-Hermitian. This leads
to different right, 1+, and left, ¢, eigenfunctions of the
matrix @ (normalized by S5 ¥F (€)= (€) = 1):

bt = Mg it WYy =My, (11)

where \; are the eigenvalues, labeled with a discrete ‘mo-
mentum’ k. Although there exists a similarity transfor-
mation which turns the problem into Hermitian (which
means that all Ay are real), it is convenient to keep the
above representation unchanged.

The Green’s function of the FPE () can immediately
be expressed as G, = " which gives

Gu(0,01) =D N (O ().
k

Diagonalizing the tri-diagonal matrix @ defined by
Eqs. @) and (), one finds the eigenvalues of Eq. ()

A = 24/p(1 —p)cosk, (12)
where k = mn/(L + 1), n = 1,2,... L. The appropriate
eigenfunctions are given by

VEW) = ergtt? [sin k(0 +1) — ¢*/?sin kf] :

2w P
P+ D-M) T 1-p]

(13)

The eigenfunctions corresponding to k = 0 are given by

1—¢q

2 __
Co—l_qL+17

wa_(f) = COqgv Yy (f) = Co, (14)
and the appropriate eigenvalue, A\g = 1 is separated by
a gap from the continuous (as L — o0) spectrum of
Eq. (@), unless p = 1/2. The RW is biased towards
¢ — L (full buffer and congested traffic) for p > 1/2, or
towards ¢ — 0 (empty buffer) for p < 1/2. At p =1/2
when the RW is unbiased and the eigenvalue spectrum is
gapless, the fluctuations are strongest. In all cases, since
Ao = 1 while A\ < 1 for k # 0, it is the isolated solution
(@) which governs the stationary distribution ([@):

Po(0) = lim G, p,(6,0) =c2q". (15)

nog—r—0o0

Noticing that G1(£,¢') = wee so that Gi(L,L) = p,
one finds the average loss rate from Eqgs. (@) and ([[H) as
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FIG. 2: compressibility x (for L = 1000) shows a fast increase

of fluctuations in time at the critical point, p = %

so that the loss rate is a constant of order 1 for p > 1/2,
a small fraction of the buffer capacity for p = 1/2 and
an exponentially vanishing fraction for p < 1/2. This
straightforward result could be obtained directly from
the Langevin description. The matching between these
three asymptotic regimes takes place in a narrow region
(of width ~ 1/L) around p = 1.

The result for the variance, Eq. (@), is convenient to
express in terms of the ‘compressibility’ defined by

<5‘C?\7> = XN <£N>7 5£N(7’L) = EN(n) — <£N> . (16)
From Eqs. [@) and ([3)) we find
XN = 1_p7):>t(L)

dp (1 —p)
_|_
Tr1 2

11=)\N
1—-——Tk| q(1
N1—AJ (17)

The behavior of x is illustrated in Fig. [ which shows
its fast increase at the critical point, p = 1/2. Using
Eq. @) for Ax, it is easy to simplify Eq. (). We find
that a steady-state regime (when one neglects the N-
dependent term in the square brackets above) is reached
for N > Ny where

sin? k
(1= Ag)?

No=[(2p—1)*+ (x/L)%] "

In this regime, the compressibility saturates at

1—[2p—1]|

2L, 12p— 1L <1
Thus, the compressibility diverges at the transition point

p = 1/2 in the thermodynamic limit, L — oo and
N/L? — oco. The variance ([H) remains finite at the



transition point and in the thermodynamic limit it obeys
the central limit theorem.

However, at the critical point, p = 1/2, the steady-
state regime is reachable only at unrealistically long times
N> Ny L2. In the intermediate regime, 1 < N < Ny,
the compressibility rapidly increases with time:

2+/2 Oodx 1—e®
Xy =cN'2, CZT/§<1_72>7 (18)
0

x

so that the variance exceeds the average value of the loss-
rate and its distribution is no longer normal. More im-
portantly, in this regime the fluctuations of the loss rate
are no longer Markovian as they exhibit long-time corre-
lations. To show this, we consider the temporal correla-
tion function of the loss rate defined by

(6LN(0)6LN(M))
(0L%)

RQ(NaM)E ’ M >N.

We obtain an exact expression for Ro(N, M) similarly
to that for xn, Eq. (), omitted for brevity. In the most
relevant regime, Ny > N > 1 and M > N, it reduces to

N 2
Ro(N, 1) =P [eM@Wﬂ 2
XN TM

—|2p-—1¢erﬁ:02p-1h/ﬂ4/2)]. (19)

At the critical point this reduces using Eq. ([[8) to

_ N
Ro(N, M)|,_y/p =c 1\/m- (20)

This long-time correlation (in spite of the packet arrival
being Markovian) is another clear sign of criticality.

Let us note that the boundary conditions in Eq. ()
correspond to simultaneous arrival and service of pack-
ets. In this case overflown packets are only partially dis-
carded. In more realistic models the overflown packets
should be discarded completely. To reflect this, we can
choose one of the standard procedures: service first or
packet arrival first. This is straightforward to formu-
late: the transition matrix remains the same in the bulk,
Eq. @), while changes in 3 x 3 blocks in the boundary
corners. In solving the eigenvalue problem ([Il) the ap-
propriate boundary layer states can be eliminated. This
reduces our problem to that described by Egs. (@) and
@) but with a smaller number of states and different
(and dependent on eigenvalues) corner elements on the
main diagonal. This can be solved in a similar way as the
model of Egs. @) and the dependence on N and M
turns out to be the same in the asymptotical regime of
Egs. X)-E0).

In conclusion, we have demonstrated that the stochas-
tic nature of discrete data traffic in packet-switched net-
works (e.g., the Internet) results in a critical behavior

with an abrupt transition from free to lossy operation at
the level of a single node when the arrival rate reaches a
certain critical value. The critical point is characterized
by strong fluctuations and long-memory effects in the loss
rate. This leads to an operational failure of a single node
which can contribute to cascaded failures and thus con-
gestion of large parts of the network. We intend to use
the results of the present model as building blocks for
describing such a congestion within the framework that
accounts also for the topological disorder [23].
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