87 research outputs found

    Suicide Fads: Frequency and Characteristics of Hydrogen Sulfide Suicides in the United States

    Get PDF
    Objective: To assess the frequency of hydrogen sulfide (H2S) suicides and describe the characteristics of victims in the United States (U.S.) since the technique became common in Japan in 2007.Methods: To ascertain the frequency of intentional H2S related deaths in the U.S. prior to the start of the Japanese trend in 2007, we searched the multiple-cause-of-death data from the National Vital Statistics System. To collect as much information about the victims as possible, we sent an email to the National Association of Medical Examiners (NAME) listserv asking for their cooperation in identifying cases of H2S suicide. To identify cases that were not voluntarily reported by medical examiners but were reported by the media, we conducted Google searches using the search terms: “hydrogen sulfide suicide,” “H2S suicide,” “detergent suicide,” “chemical suicide,” and “suicide fad.” We obtained all available autopsy reports and abstracted information, including the site of the incident, the presence of a note warning others about the toxic gas and the demographic characteristics of the victims. We contacted medical examiners who potentially had custody of the cases that were identified through media reports and requested autopsies of these victims. When unable to obtain the autopsies, we gathered information from the media reports.Results: Forty-five deaths from H2S exposure occurred in the U.S. from 1999 to 2007, all unintentional. Responses from the NAME listserv yielded autopsy reports for 11 victims, and Google searches revealed an additional 19 H2S suicides in the U.S. since 2008. Overall (n=30), two cases were identified during 2008, 10 in 2009, and 18 in 2010. The majority of victims were white males, less than 30-years-old, left a warning note, and were found in cars. There were five reports of injuries to first responders, but no secondary fatalities.Conclusion: H2S suicides are increasing in the U.S., and their incidence is probably underestimated by public health officials and physicians. First responders are at risk when assessing these victims due to the severe toxicity of the gas. Emergency providers must be aware of H2S suicides to educate others and care for the rare survivor. [West J Emerg Med. 2011;12(3):300-304.

    The development and application of bioinformatics core competencies to improve bioinformatics training and education

    Get PDF
    Bioinformatics is recognized as part of the essential knowledge base of numerous career paths in biomedical research and healthcare. However, there is little agreement in the field over what that knowledge entails or how best to provide it. These disagreements are compounded by the wide range of populations in need of bioinformatics training, with divergent prior backgrounds and intended application areas. The Curriculum Task Force of the International Society of Computational Biology (ISCB) Education Committee has sought to provide a framework for training needs and curricula in terms of a set of bioinformatics core competencies that cut across many user personas and training programs. The initial competencies developed based on surveys of employers and training programs have since been refined through a multiyear process of community engagement. This report describes the current status of the competencies and presents a series of use cases illustrating how they are being applied in diverse training contexts. These use cases are intended to demonstrate how others can make use of the competencies and engage in the process of their continuing refinement and application. The report concludes with a consideration of remaining challenges and future plans

    Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning

    Get PDF
    Understanding the spatial organization of tissues is of critical importance for both basic and translational research. While recent advances in tissue imaging are opening an exciting new window into the biology of human tissues, interpreting the data that they create is a significant computational challenge. Cell segmentation, the task of uniquely identifying each cell in an image, remains a substantial barrier for tissue imaging, as existing approaches are inaccurate or require a substantial amount of manual curation to yield useful results. Here, we addressed the problem of cell segmentation in tissue imaging data through large-scale data annotation and deep learning. We constructed TissueNet, an image dataset containing >1 million paired whole-cell and nuclear annotations for tissue images from nine organs and six imaging platforms. We created Mesmer, a deep learning-enabled segmentation algorithm trained on TissueNet that performs nuclear and whole-cell segmentation in tissue imaging data. We demonstrated that Mesmer has better speed and accuracy than previous methods, generalizes to the full diversity of tissue types and imaging platforms in TissueNet, and achieves human-level performance for whole-cell segmentation. Mesmer enabled the automated extraction of key cellular features, such as subcellular localization of protein signal, which was challenging with previous approaches. We further showed that Mesmer could be adapted to harness cell lineage information present in highly multiplexed datasets. We used this enhanced version to quantify cell morphology changes during human gestation. All underlying code and models are released with permissive licenses as a community resource

    A crossmodal crossover: opposite effects of visual and auditory perceptual load on steady-state evoked potentials to irrelevant visual stimuli

    Get PDF
    Mechanisms of attention are required to prioritise goal-relevant sensory events under conditions of stimulus competition. According to the perceptual load model of attention, the extent to which task-irrelevant inputs are processed is determined by the relative demands of discriminating the target: the more perceptually demanding the target task, the less unattended stimuli will be processed. Although much evidence supports the perceptual load model for competing stimuli within a single sensory modality, the effects of perceptual load in one modality on distractor processing in another is less clear. Here we used steady-state evoked potentials (SSEPs) to measure neural responses to irrelevant visual checkerboard stimuli while participants performed either a visual or auditory task that varied in perceptual load. Consistent with perceptual load theory, increasing visual task load suppressed SSEPs to the ignored visual checkerboards. In contrast, increasing auditory task load enhanced SSEPs to the ignored visual checkerboards. This enhanced neural response to irrelevant visual stimuli under auditory load suggests that exhausting capacity within one modality selectively compromises inhibitory processes required for filtering stimuli in another

    Insulin and IGF1 signalling pathways in human astrocytes <i>in vitro</i> and <i>in vivo</i>; characterisation, subcellular localisation and modulation of the receptors.

    Get PDF
    Background The insulin/IGF1 signalling (IIS) pathways are involved in longevity regulation and are dysregulated in neurons in Alzheimer’s disease (AD). We previously showed downregulation in IIS gene expression in astrocytes with AD-neuropathology progression, but IIS in astrocytes remains poorly understood. We therefore examined the IIS pathway in human astrocytes and developed models to reduce IIS at the level of the insulin or the IGF1 receptor (IGF1R). Results We determined IIS was present and functional in human astrocytes by immunoblotting and showed astrocytes express the insulin receptor (IR)-B isoform of Ir. Immunocytochemistry and cell fractionation followed by western blotting revealed the phosphorylation status of insulin receptor substrate (IRS1) affects its subcellular localisation. To validate IRS1 expression patterns observed in culture, expression of key pathway components was assessed on post-mortem AD and control tissue using immunohistochemistry. Insulin signalling was impaired in cultured astrocytes by treatment with insulin + fructose and resulted in decreased IR and Akt phosphorylation (pAkt S473). A monoclonal antibody against IGF1R (MAB391) induced degradation of IGF1R receptor with an associated decrease in downstream pAkt S473. Neither treatment affected cell growth or viability as measured by MTT and Cyquant® assays or GFAP immunoreactivity. Discussion IIS is functional in astrocytes. IR-B is expressed in astrocytes which differs from the pattern in neurons, and may be important in differential susceptibility of astrocytes and neurons to insulin resistance. The variable presence of IRS1 in the nucleus, dependent on phosphorylation pattern, suggests the function of signalling molecules is not confined to cytoplasmic cascades. Down-regulation of IR and IGF1R, achieved by insulin + fructose and monoclonal antibody treatments, results in decreased downstream signalling, though the lack of effect on viability suggests that astrocytes can compensate for changes in single pathways. Changes in signalling in astrocytes, as well as in neurons, may be important in ageing and neurodegeneration

    Role of genetic testing for inherited prostate cancer risk: Philadelphia prostate cancer consensus conference 2017

    Get PDF
    Purpose: Guidelines are limited for genetic testing for prostate cancer (PCA). The goal of this conference was to develop an expert consensus-dri
    corecore