840 research outputs found

    Lars Vegard:key communicator and pioneer crystallographer

    Get PDF
    The Norwegian physicist Lars Vegard studied with William H. Bragg in Leeds and then with Wilhelm Wien in WĂźrzburg. There, in 1912, he heard a lecture by Max Laue describing the first X-ray diffraction experiments and took accurate notes which he promptly sent to Bragg. Although now remembered mainly for his work on the physics of the aurora borealis, Vegard also did important pioneering work in three areas of crystallography. He derived chemical insight from a series of related crystal structures that he determined, Vegard's Law relates the unit-cell dimensions of mixed crystals to those of the pure components, and he determined some of the first crystal structures of gases solidified at cryogenic temperatures

    Equilibria-based Probabilistic Model Checking for Concurrent Stochastic Games

    Get PDF
    Probabilistic model checking for stochastic games enables formal verification of systems that comprise competing or collaborating entities operating in a stochastic environment. Despite good progress in the area, existing approaches focus on zero-sum goals and cannot reason about scenarios where entities are endowed with different objectives. In this paper, we propose probabilistic model checking techniques for concurrent stochastic games based on Nash equilibria. We extend the temporal logic rPATL (probabilistic alternating-time temporal logic with rewards) to allow reasoning about players with distinct quantitative goals, which capture either the probability of an event occurring or a reward measure. We present algorithms to synthesise strategies that are subgame perfect social welfare optimal Nash equilibria, i.e., where there is no incentive for any players to unilaterally change their strategy in any state of the game, whilst the combined probabilities or rewards are maximised. We implement our techniques in the PRISM-games tool and apply them to several case studies, including network protocols and robot navigation, showing the benefits compared to existing approaches

    NMR quality control of fragment libraries for screening

    Get PDF
    Fragment-based screening has evolved as a remarkable approach within the drug discovery process both in the industry and academia. Fragment screening has become a more structure-based approach to inhibitor development, but also towards development of pathway-specific clinical probes. However, it is often witnessed that the availability, immediate and long-term, of a high quality fragment-screening library is still beyond the reach of most academic laboratories. Within iNEXT (Infrastructure for NMR, EM and X-rays for Translational research), a EU-funded Horizon 2020 program, a collection of 782 fragments were assembled utilizing the concept of "poised fragments" with the aim to facilitate downstream synthesis of ligands with high affinity by fragment ligation. Herein, we describe the analytical procedure to assess the quality of this purchased and assembled fragment library by NMR spectroscopy. This quality assessment requires buffer solubility screening, comparison with LC/MS quality control and is supported by state-of-the-art software for high throughput data acquisition and on-the-fly data analysis. Results from the analysis of the library are presented as a prototype of fragment progression through the quality control process

    Quasi Harmonic Lattice Dynamics and Molecular Dynamics calculations for the Lennard-Jones solids

    Full text link
    We present Molecular Dynamics (MD), Quasi Harmonic Lattice Dynamics (QHLD) and Energy Minimization (EM) calculations for the crystal structure of Ne, Ar, Kr and Xe as a function of pressure and temperature. New Lennard-Jones (LJ) parameters are obtained for Ne, Kr and Xe to reproduce the experimental pressure dependence of the density. We employ a simple method which combines results of QHLD and MD calculations to achieve densities in good agreement with experiment from 0 K to melting. Melting is discussed in connection with intrinsic instability of the solid as given by the QHLD approximation. (See http://www.fci.unibo.it/~valle for related papers)Comment: 7 pages, 5 figures, REVte

    A unified potential drop calibration function for common crack growth specimens

    Get PDF
    Calibration functions, used to determine crack extension from potential drop measurements, are not readily available for many common crack growth specimen types. This restricts testing to a limited number of specimen types, typically resulting in overly conservative material properties being used in residual life assessments. This paper presents a unified calibration function which can be applied to all common crack growth specimen types, mitigating this problem and avoiding the significant costs associated with the current conservative approach. Using finite element analysis, it has been demonstrated that Johnson’s calibration function can be applied to the seven most common crack growth specimen types: C(T), SEN(T), SEN(B), M(T), DEN(T), CS(T) and DC(T). A parametric study has been used to determine the optimum configuration of electrical current inputs and PD probes. Using the suggested configurations, the error in the measurement of crack extension is <6% for all specimen types, which is relatively small compared to other sources of error commonly associated with the potential drop technique

    Discovery of Mycobacterium Tuberculosis Protein Tyrosine Phosphatase A (MptpA) Inhibitors Based on Natural Products and a Fragment-Based Approach

    No full text
    Naturally inspired or fragment based. Mcyobacterium tuberculosis has two functional phosphatases, protein tyrosine phosphates A and B (MptpA and B), which are thought to mediate mycobacterial survival in the host. Here we describe the first inhibitors of MptpA (see scheme). Initial hits were identified in screening collections that were inspired by natural products and composed by fragment-based approach

    Researching retired ex-servicemen: reflections on ethnographic encounters

    Get PDF
    The opportunities and challenges that younger, female, civilian researchers can encounter when undertaking ethnographic research with predominantly male military veterans are relatively underexplored sociologically. This is despite a growing literature on reflexivity in military studies over the past decade. To address this gap, we draw on symbolic interactionist insights to examine the reflective account of a British, female researcher in her mid-20s, who conducted qualitative research with 20 ‘older’ (aged 60+) retired servicemen from the Royal British Legion, a United Kingdom charity providing support for military veterans and their families. The study explored ex-servicemen’s embodied experiences of physical activity. The findings presented here cohere around four salient themes identified in the ethnographic reflections: (1) researcher positionality as a young, female, civilian researcher in a traditionally masculine militarised world; (2) managing distressing topics and interactional discomfort; (3) maintaining an ‘ethic of care’; and (4) dilemmas regarding representational issues and ex-servicemen’s embodied experiences

    13C-direct detected NMR experiments for the sequential J-based resonance assignment of RNA oligonucleotides

    Get PDF
    We present here a set of 13C-direct detected NMR experiments to facilitate the resonance assignment of RNA oligonucleotides. Three experiments have been developed: (1) the (H)CC-TOCSY-experiment utilizing a virtual decoupling scheme to assign the intraresidual ribose 13C-spins, (2) the (H)CPC-experiment that correlates each phosphorus with the C4′ nuclei of adjacent nucleotides via J(C,P) couplings and (3) the (H)CPC-CCH-TOCSY-experiment that correlates the phosphorus nuclei with the respective C1′,H1′ ribose signals. The experiments were applied to two RNA hairpin structures. The current set of 13C-direct detected experiments allows direct and unambiguous assignment of the majority of the hetero nuclei and the identification of the individual ribose moieties following their sequential assignment. Thus, 13C-direct detected NMR methods constitute useful complements to the conventional 1H-detected approach for the resonance assignment of oligonucleotides that is often hindered by the limited chemical shift dispersion. The developed methods can also be applied to large deuterated RNAs

    Importance of Glycosylation on Function of a Potassium Channel in Neuroblastoma Cells

    Get PDF
    The Kv3.1 glycoprotein, a voltage-gated potassium channel, is expressed throughout the central nervous system. The role of N-glycans attached to the Kv3.1 glycoprotein on conducting and non-conducting functions of the Kv3.1 channel are quite limiting. Glycosylated (wild type), partially glycosylated (N220Q and N229Q), and unglycosylated (N220Q/N229Q) Kv3.1 proteins were expressed and characterized in a cultured neuronal-derived cell model, B35 neuroblastoma cells. Western blots, whole cell current recordings, and wound healing assays were employed to provide evidence that the conducting and non-conducting properties of the Kv3.1 channel were modified by N-glycans of the Kv3.1 glycoprotein. Electrophoretic migration of the various Kv3.1 proteins treated with PNGase F and neuraminidase verified that the glycosylation sites were occupied and that the N-glycans could be sialylated, respectively. The unglycosylated channel favored a different whole cell current pattern than the glycoform. Further the outward ionic currents of the unglycosylated channel had slower activation and deactivation rates than those of the glycosylated Kv3.1 channel. These kinetic parameters of the partially glycosylated Kv3.1 channels were also slowed. B35 cells expressing glycosylated Kv3.1 protein migrated faster than those expressing partially glycosylated and much faster than those expressing the unglycosylated Kv3.1 protein. These results have demonstrated that N-glycans of the Kv3.1 glycoprotein enhance outward ionic current kinetics, and neuronal migration. It is speculated that physiological changes which lead to a reduction in N-glycan attachment to proteins will alter the functions of the Kv3.1 channel
    • …
    corecore