
 
 

University of Birmingham

Equilibria-based probabilistic model checking for
concurrent stochastic games
Kwiatkowska, Marta; Norman, Gethin; Parker, David; Santos, Gabriel

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Kwiatkowska, M, Norman, G, Parker, D & Santos, G 2019, Equilibria-based probabilistic model checking for
concurrent stochastic games. in MH ter Beek, A McIver & JN Oliveira (eds), Formal Methods – The Next 30
Years: Third World Congress, FM 2019, Porto, Portugal, October 7–11, 2019, Proceedings. Lecture Notes in
Computer Science, vol. 11800, Programming and Software Engineering, vol. 11800, Springer, pp. 298-315, 23rd
International Symposium on Formal Methods (FM'19), Porto, Portugal, 7/10/19.

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 10/10/2019

The final authenticated version is available online at https://doi.org/10.1007/978-3-030-30942-8_19.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Mar. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Birmingham Research Portal

https://core.ac.uk/display/267317542?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.birmingham.ac.uk/portal/en/publications/equilibriabased-probabilistic-model-checking-for-concurrent-stochastic-games(5a314895-23b2-4778-bf68-a9237fa8ccd8).html


Equilibria-based Probabilistic Model Checking
for Concurrent Stochastic Games

Marta Kwiatkowska1, Gethin Norman2, David Parker3, and Gabriel Santos1

1 Department of Computing Science, University of Oxford, UK
2 School of Computing Science, University of Glasgow, UK

3 School of Computer Science, University of Birmingham, UK

Abstract. Probabilistic model checking for stochastic games enables
formal verification of systems that comprise competing or collaborating
entities operating in a stochastic environment. Despite good progress
in the area, existing approaches focus on zero-sum goals and cannot
reason about scenarios where entities are endowed with different objec-
tives. In this paper, we propose probabilistic model checking techniques
for concurrent stochastic games based on Nash equilibria. We extend
the temporal logic rPATL (probabilistic alternating-time temporal logic
with rewards) to allow reasoning about players with distinct quantita-
tive goals, which capture either the probability of an event occurring or
a reward measure. We present algorithms to synthesise strategies that
are subgame perfect social welfare optimal Nash equilibria, i.e., where
there is no incentive for any players to unilaterally change their strategy
in any state of the game, whilst the combined probabilities or rewards
are maximised. We implement our techniques in the PRISM-games tool
and apply them to several case studies, including network protocols and
robot navigation, showing the benefits compared to existing approaches.

1 Introduction

Probabilistic model checking is a technique for formally verifying systems that
exhibit uncertainty or feature randomisation. Quantitative system requirements,
which express, e.g., safety, reliability or performance, are formally specified in
temporal logic. These are then automatically checked against a probabilistic
model, such as a Markov chain, capturing the possible behaviour of the sys-
tem being verified. Closely related is strategy synthesis, which uses probabilistic
models with nondeterminism, for example Markov decision processes (MDPs), to
automatically generate policies or controllers which guarantee that pre-specified
system requirements are satisfied. Thanks to mature tool support [28,20], the
methods have been successfully applied to many domains, from autonomous
vehicles, to computer security, to task scheduling.

Stochastic games are a modelling formalism that incorporates probability,
nondeterminism and multiple players, who can compete or collaborate to achieve
their goals. A variety of verification algorithms for these models have been de-
vised, e.g., [13,46,2,3,14]. More recently, probabilistic model checking and strat-
egy synthesis techniques for stochastic games have been proposed [17,6,29,25]
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and implemented in the PRISM-games tool [32]. This has allowed modelling
and verification of stochastic games to be used for a variety of non-trivial ap-
plications, in which competitive or collaborative behaviour between entities is a
crucial ingredient, including computer security and energy management.

Initial work in this direction focused on turn-based stochastic games (TSGs),
where each state is controlled by a single player [17], and proposed the logic
rPATL, an extension of the well known logic ATL [4]. The logic can specify that
a coalition of players is able to achieve a quantitative objective regarding the
probability of an event’s occurrence or the expectation of a reward measure,
regardless of the strategies of the other players. Recently [29], this was extended
to concurrent stochastic games (CSGs), in which players make decisions simul-
taneously. This allows more realistic modelling of interactive agents operating
concurrently. In another direction, multi-objective model checking of TSGs [18,6]
enabled reasoning about coalitions aiming to satisfy a Boolean combination of
objectives, regardless of the remaining players’ behaviour.

A limitation of these approaches is that they focus on zero-sum properties, in
which a coalition aims to satisfy some requirement or to optimise some objective,
while the remaining players have the directly opposing goal. In this paper, we
consider CSGs in which two coalitions of players have distinct quantitative ob-
jectives. For this, we use the notion of subgame perfect Nash equilibria [38], i.e.,
scenarios in which it is not beneficial for any player to unilaterally change their
strategy in any state. Furthermore, amongst these, we consider social welfare
optimal equilibria, which maximise the sum of the objectives of the players.

We propose an extension to rPATL which allows reasoning about subgame
perfect social welfare optimal Nash equilibria between two coalitions of play-
ers, with respect to probabilistic or reward objectives, expressed using a variety
of temporal operators. We then give a model checking algorithm for the logic
against CSGs which employs a combination of backwards induction (for finite-
horizon operators) and value iteration (for infinite-horizon operators). A key
ingredient of the computation is finding social welfare optimal Nash equilib-
ria for bimatrix games, which we perform using labelled polytopes [33] and a
reduction to SMT. We implement our techniques as an extension of the PRISM-
games [32] model checker and develop a selection of case studies, including robot
navigation, communication protocols and power control, to evaluate its perfor-
mance and applicability. We show that we are able to synthesise strategies that
outperform those derived using existing techniques.

Related Work. Game-theoretic models are used in many contexts within veri-
fication, as summarised above. In addition, the existence of and the complexity
of finding Nash equilibria for stochastic games are studied in [16,46], but without
practical algorithms. In [41], a learning-based algorithm for finding Nash equilib-
ria for discounted properties of CSGs is presented and evaluated. Similarly, [34]
studies Nash equilibria for discounted properties and introduces iterative algo-
rithms for strategy synthesis. A theoretical framework for price-taking equilibria
of CSGs is given in [5], where players try to minimise their costs which include a
price common to all players and dependent on the decisions of all players. A no-
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tion of strong Nash equilibria for a restricted class of CSGs is formalised in [21]
and an approximation algorithm for checking the existence of such equilibria for
discounted properties is introduced and evaluated. We also mention [9], which
studies the existence of stochastic equilibria with imprecise deviations for CSGs
and proposes a PSPACE algorithm to compute such equilibria.

For non-stochastic games, model checking tools such as PRALINE [10], EA-
GLE [45] and EVE [24] support Nash equilibria, as does MCMAS-SLK [11] via
strategy logic. General purpose tools such as Gambit [35] can compute a variety
of equilibria but, again, not for stochastic games.

2 Preliminaries

We first provide some background material on game theory and stochastic games.
We let Dist(X) denote the set of probability distributions over set X.

Definition 1 (Normal form game). A (finite, n-person) normal form game
(NFG) is a tuple N = (N,A, u) where: N = {1, . . . , n} is a finite set of players;
A = A1× · · ·×An and Ai is a finite set of actions available to player i ∈ N ;
u=(u1, . . . , un) and ui : A→ R is a utility function for player i ∈ N .

For an NFG N, the players choose actions at the same time, where the choice for
player i ∈ N is over the action set Ai. When each player i choose ai, the utility
received by player j equals uj(a1, . . . , an). A (mixed) strategy σi for player i is
a distribution over its action set. A strategy profile σ=(σ1, . . . , σn) is a tuple of
strategies for each player and the expected utility of player i under σ is:

ui(σ)
def
=
∑

(a1,...,an)∈A ui(a1, . . . , an) ·
(∏n

j=1 σj(aj)
)
.

For profile σ=(σ1, . . . , σn) and player i strategy σ′i, we define the sequence σ−i =
(σ1, . . . , σi−1, σi+1, . . . , σn) and profile σ−i[σ

′
i] = (σ1, . . . , σi−1, σ

′
i, σi+1, . . . , σn).

For player i and strategy sequence σ−i, a best response for player i to σ−i is a
strategy σ?i for player i such that ui(σ−i[σ

?
i ]) > ui(σ−i[σi]) for all strategies σi

of player i. We now introduce the concept of Nash equilibria and a particular
variant called social welfare optimal, which are equilibria that maximise the total
utility, i.e. maximise the sum of players’ individual utilities.

Definition 2 (Nash equilibrium). For NFG N, a strategy profile σ? is a Nash
equilibrium (NE) if σ?i is a best response to σ?−i for all i ∈ N . Furthermore σ? is a
social welfare optimal NE (SWNE) if u1(σ?)+ · · ·+un(σ?) > u1(σ)+ · · ·+un(σ)
for all Nash equilibria σ of N.

A two-player NFG is constant-sum if there exists c ∈ R such that u1(α)+u2(α) =
c for all α ∈ A and zero-sum if c=0. For general two-player NFGs, we have a
bimatrix game which can be represented by two distinct matrices Z1,Z2 ∈ Rl×m
where A1={a1, . . . , al}, A2={b1, . . . , bm}, z1ij = u1(ai, bj) and z2ij = u2(ai, bj).

Example 1. We consider a stag hunt game [39] where, if players decide to
cooperate, this can yield a large payoff, but, if the others do not, then the
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cooperating player gets nothing while the remaining players get a small payoff.
A scenario with 3 players, where two form a coalition, yields a bimatrix game:

Z1 =

( b0 b1 b2

a0 2 2 2
a1 0 4 6

)
Z2 =

( b0 b1 b2

a0 4 2 0
a1 4 6 9

)
where a0 and a1 represent player 1 not cooperating and cooperating respectively
and bi that i players in the coalition cooperate. There are three Nash equilibria:

– player 1 and the coalition select a0 and b0, respectively with utilities (2, 4);

– player 1 selects a0 and a1 with probabilities 5/9 and 4/9 and the coalition
selects b0 and b2 with probabilities 2/3 and 1/3 with utilities (2, 4);

– player 1 and the coalition select a1 and b2 respectively with utilities (6, 9).

For instance, in the first case, neither player 1 nor the coalition thinks the other
will cooperate: the best they can do is act alone. The third is the only SWNE.

Concurrent stochastic games. In this paper, we use CSGs, in which players
repeatedly make simultaneous (probabilistic) choices that update the game state.

Definition 3 (Concurrent stochastic game). A concurrent stochastic multi-
player game (CSG) is a tuple G = (N,S, S̄, A,∆, δ,AP ,L) where:

– N = {1, . . . , n} is a finite set of players;

– S is a finite set of states and S̄ ⊆ S is a set of initial states;

– A = (A1∪{⊥})× · · ·×(An∪{⊥}) where Ai is a finite set of actions available
to player i ∈ N and ⊥ is an idle action disjoint from the set ∪ni=1Ai;

– ∆ : S → 2∪
n
i=1Ai is an action assignment function;

– δ : S×A→ Dist(S) is a probabilistic transition function;

– AP is a set of atomic propositions and L : S → 2AP is a labelling function.

A CSG G starts in an initial state s̄ ∈ S̄ and, when in state s, each player i ∈ N
selects an action from its available actions Ai(s) given by ∆(s)∩Ai if this set is
non-empty and {⊥} otherwise. Supposing player i selects action ai, the state of
the game is updated according to the distribution δ(s, (a1, . . . , an)). We augment
CSGs with reward structures of the form r = (rA, rS) where rA : S×A→ R>0 is
an action reward function and rS : S → R>0 is a state reward function.

Definition 4 (End component). An end component of a CSG G is a pair
(S′, δ′) comprising a subset S′ ⊆ S of states and a partial probabilistic transition
function δ′ : S′×A→ Dist(S) satisfying the following conditions:

– (S′, δ′) defines a sub-CSG of G, i.e., for all s′ ∈ S′ and α ∈ A, if δ′(s′, α) is
defined, then δ′(s′, α)=δ(s′, α) and δ′(s′, α)(s)=0 for all s ∈ S\S′;

– the underlying graph of (S′, δ′) is strongly connected.

It is non-terminal if δ(s, α)(s′)>0 for some s ∈ S′, α ∈ A and s′ ∈ S\S′.
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Fig. 1: CSG model of a medium access control problem.

A path of G represents a resolution of both the players’ and probabilistic choices
and is given by a sequence π = s0

α0−→ s1
α1−→ · · · such that si ∈ S, αi =

(ai1, . . . , a
i
n) ∈ A, aij ∈ Aj(si) for j ∈ N and δ(si, αi)(si+1) > 0 for all i > 0. For

a path π, the (i+1)th state is denoted π(i), the (i+1)th action π[i], and if π is
finite, the final state by last(π). The sets of finite and infinite paths (starting in
state s) are given by FPathsG and IPathsG (FPathsG,s and IPathsG,s).

CSG strategies and equilibria. A strategy for player i in a CSG G resolves the
player’s choices. More precisely, it is a function σi : FPathsG → Dist(Ai ∪ {⊥})
such that if σi(π)(ai)>0, then ai ∈ Ai(last(π)). We denote by Σi

G the set of
strategies of player i.

As for NFGs, a strategy profile for G is a tuple σ=(σ1, . . . , σn) of strategies for
all players and, for a player i strategy σ′i, we define the sequence σ−i and profile
σ−i[σ

′
i] in the same way. For strategy profile σ and state s, we let IPathsσG,s denote

the infinite paths from s under the choices of σ. We can define a probability
measure ProbσG,s over the infinite paths IPathsσG,s [27] and, for random variable
X : IPathsG → R>0, the expected value EσG,s(X) of X in s with respect to σ.

An objective (or utility function) for player i of G is a random variable
Xi : IPathsG → R>0. This can encode, e.g., the probability or expected cu-
mulative reward for reaching a target. NE for CSGs can be defined as for NFGs.
Since our model checking algorithm is based on backwards induction [43,36], we
restrict attention to sub-game perfect NE [38], which are NE in every state of
the CSG. In addition, for infinite-horizon objectives, the existence of NE is an
open problem [8] so, for such objectives, we use ε-NE, which exist for any ε>0.

Definition 5 (Subgame perfect ε-NE). For CSG G and ε>0, a strategy pro-
file σ? is a subgame perfect ε-Nash equilibrium for objectives 〈Xi〉i∈N if and only

if Eσ?G,s(Xi) > supσi∈Σi E
σ?−i[σi]

G,s (Xi)− ε for all i ∈ N and s ∈ S.

Social welfare optimal variants of these equilibria (SWNEs and ε-SWNEs) are
defined for CSGs as for NFGs above (see Definition 2).

Example 2. In [10] a deterministic concurrent game is used to model medium
access control. Two users with limited energy share a wireless channel and choose
to transmit (t) or wait (w) and, if both transmit, the transmissions fail due to
interference. We extend this to a CSG by assuming that transmissions succeed
with probability q2 if both transmit. Figure 1 presents a CSG where each user has
energy for one transmission (the first value of tuples labelling states represents
if a user has energy and the second if it has successfully transmitted).
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If the objectives are to maximise the probability of a successful transmission,
there are two SWNEs when one user waits for the other to transmit and then
transmits. This means both successfully transmit. If the objectives are to max-
imise the probability of being one of the first to transmit, then there is only one
SWNE corresponding to both immediately trying to transmit.

3 Extending rPATL with Nash Formulae

We now extend the logic rPATL, previously proposed for zero-sum properties of
both TSGs [29] and CSGs [29], to allow the analysis of equilibria-based proper-
ties. Since we are limited to considering ε-SWNE for infinite-horizon properties,
we assume some ε has been fixed in advance when considering such properties.

Definition 6 (Extended rPATL syntax). The syntax of our extended ver-
sion of rPATL is given by the grammar:

φ := true | a | ¬φ | φ ∧ φ | 〈〈C〉〉P∼q[ψ ] | 〈〈C〉〉Rr∼x[ ρ ] | 〈〈C:C ′〉〉max∼x(θ)

θ := P[ψ ]+P[ψ ] | Rr[ ρ ]+Rr[ ρ ]

ψ := Xφ | φ U6k φ | φ U φ

ρ := I=k | C6k | F φ

where a is an atomic proposition, C and C ′ are coalitions of players such that
C ′=N\C, ∼∈ {<,6,>, >}, q ∈ [0, 1], x ∈ R, r is a reward structure and k ∈ N.

The logic rPATL is a branching-time temporal logic that combines the probabilis-
tic operator P of PCTL [23], PRISM’s reward operator R [28], and the coalition
operator 〈〈C〉〉 of ATL [4]. The formula 〈〈C〉〉P>q[ψ ] states that the coalition C
has strategies which, when followed, regardless of the strategies of N\C, guaran-
tee that the probability of satisfying path formula ψ is at least q. Such properties
are inherently zero-sum in nature as one coalition tries to maximise an objective
(here the probability of ψ) and the other to minimise it.

We extend rPATL with the ability to reason about equilibria through Nash
formulae of the form 〈〈C:C ′〉〉max∼x(θ). In addition to the usual state (φ), path
(ψ) and reward (ρ) formulae, we distinguish non-zero sum formulae (θ), which
comprise a sum of probability or reward objectives. The formula 〈〈C:C ′〉〉max∼x(θ)
is satisfied if there exists a subgame perfect SWNE strategy profile between
coalitions C and C ′(=N\C) under which the sum of the two objectives in θ is
∼x. As is common for probabilistic temporal logics, we allow numerical queries
of the form 〈〈C:C ′〉〉max=?[θ] which return the sum of SWNE values.

For probabilistic objectives (θ=P[ψ1 ]+P[ψ2 ]), each ψi can be a “next” (X),
“bounded until” (U6k) or “until” (U) operator, with the usual equivalences such
as F φ ≡ true U φ. For reward objectives (θ=Rr1 [ ρ1 ]+Rr2 [ ρ2 ]), each ρi refers
to the expected reward with respect to reward structure ri: the instantaneous
reward after k steps (I=k); the reward accumulated over k steps (C6k); or the
reward accumulated until a state satisfying φ is reached (F φ).
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Example 3. Recall the medium access control CSG of Example 2. Formula
〈〈p1:p2〉〉max>2(P[ F send1 ]+P[ F send2 ]) means players p1 and p2 send their pack-
ets with probability 1, while 〈〈p1:p2〉〉max=?(P[¬send2 U send1 ]+P[¬send1 U send2 ])
asks what is the sum of subgame perfect SWNE values when the objectives are
to maximise the probability of being one of the first to successfully transmit.

Before we give the semantics, we define coalition games which, given a CSG and
coalition (set of players), reduce the CSG to a two-player CSG. Without loss of
generality we assume the coalition of players is of the form C = {1, . . . , n′}.

Definition 7 (Coalition game). For CSG G=(N,S, s̄, A,∆, δ,AP ,L) and coali-
tion C={1, . . . , n′} ⊆ N , the coalition game GC=({1, 2}, S, s̄, AC , ∆, δC ,AP ,L)
is a two-player game where: AC = AC1 ×AC2 , AC1 = (A1∪{⊥})× · · ·×(An′∪{⊥}),
AC2 = (An′+1 ∪ {⊥})× · · ·×(An ∪ {⊥}) and for any s ∈ S, aC1 = (a1, . . . , an′) ∈
AC1 and aC2 = (an′+1, . . . , an) ∈ AC2 we have δC(s, (aC1 , a

C
2 )) = δ(s, (a1, . . . , an)).

Furthermore, for a reward structure r of G, by abuse of notation we use r for
the corresponding reward structure of GC which is constructed similarly.

Definition 8 (Extended rPATL semantics). The satisfaction relation |=
of our rPATL extension is defined inductively on the structure of the formula.
The propositional logic fragment (true, a, ¬, ∧) is defined in the usual way. For
temporal operators and a state s ∈ S in CSG G, we have:

s |= 〈〈C〉〉P∼q[ψ ] ⇔ ∃σ1 ∈ Σ1.∀σ2 ∈ Σ2.Probσ1,σ2

GC ,s

{
π ∈ IPathsσ1,σ2

GC ,s
| π |=ψ

}
∼ q

s |= 〈〈C〉〉Rr∼x[ ρ ] ⇔ ∃σ1 ∈ Σ1.∀σ2 ∈ Σ2.Eσ1,σ2

GC ,s
[rew(r, ρ)] ∼ x

s |= 〈〈C:C ′〉〉max∼x(θ) ⇔ ∃σ?1 ∈ Σ1, σ?2 ∈ Σ2.
(
Eσ

?
1 ,σ

?
2

GC ,s
(Xθ

1 ) + Eσ
?
1 ,σ

?
2

GC ,s
(Xθ

2 )
)
∼ x

and (σ?1 , σ
?
2) is a subgame perfect SWNE 4 for the objectives (Xθ

1 , X
θ
2 ) in GC

where, for 16i62 and π ∈ IPathsσ1,σ2

GC ,s
:

X
P[ψ1 ]+P[ψ2 ]
i (π) = 1 if π |=ψi and 0 otherwise

X
Rr1 [ ρ1 ]+Rr2 [ ρ2 ]
i (π) = rew(ri, ρ

i)(π)

π |= Xφ ⇔ π(1) |=φ

π |=φ1 U6k φ2 ⇔ ∃i 6 k. (π(i) |=φ2 ∧ ∀j < i. π(j) |=φ1)

π |=φ1 U φ2 ⇔ ∃i ∈ N. (π(i) |=φ2 ∧ ∀j < i. π(j) |=φ1)

rew(r, I=k)(π) = rS(π(k))

rew(r, C6k)(π) =
∑k−1
i=0

(
rA(π(i), π[i]) + rS(π(i))

)
rew(r, F φ)(π) =

{
∞ if ∀j ∈ N. π(j) 6|=φ∑kφ

i=0

(
rA(π(i), π[i]) + rS(π(i))

)
otherwise

and kφ = min{k−1 | π(k) |=φ}.
4 In the case of infinite-horizon properties, this is a subgame perfect ε-SWNE.
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4 Model Checking CSGs against Nash Formulae

Since rPATL is a branching-time logic, the basic model checking algorithm works
by recursively computing the set Sat(φ) of states satisfying formula φ over the
structure of φ. So, to extend the existing rPATL model checking algorithm for
CSGs [29] to the logic from Section 3, we need only consider Nash formulae
〈〈C:C ′〉〉max∼x(θ). This requires computation of subgame perfect SWNE values
of the objectives (Xθ

1 , X
θ
2 ) and a comparison of their sum to the threshold x.

We first explain how we compute SWNE values in bimatrix games, then
subgame perfect SWNE values for finite-horizon objectives and lastly approx-
imate subgame perfect ε-SWNE values for infinite-horizon objectives. We also
discuss how to synthesise SWNE profiles. Our algorithm requires the following
assumption on CSGs, which can be checked using standard graph-based meth-
ods. Without this assumption the presented value iteration algorithms are not
guaranteed to converge (for further details, see [30]).

Assumption 1 For any infinite-horizon probabilistic properties, there are no
non-terminal end components. For infinite-horizon reward properties, the targets
are reached with probability 1 under all strategy profiles.

Computing SWNE Values of Bimatrix Games. Finding Nash equilibria
in bimatrix games is in the class of linear complementarity problems (LCPs).
More precisely, a profile (σ1, σ2) is a Nash equilibrium of the bimatrix game
Z1,Z2 ∈ Rl×m where where A1={a1, . . . , al}, A2={b1, . . . , bm} if and only if
there exists u, v ∈ R such that, for the column vectors x ∈ Rlv and y ∈ Rm
where xi=σ1(ai) and yj=σ2(bj) for 16i6l and 16j6m, we have:

xT (1u− Z1y) = 0, yT (1v − ZT2 x) = 0, 1u− Z1y > 0, 1v − ZT2 x > 0

and 0 and 1 are vectors or matrices with all components 0 and 1, respectively.
The Lemke-Howson algorithm [33] can be applied for finding Nash equilibria

and is based on the method of labelled polytopes [37]. Other well-known methods
include those based on support enumeration [40] and regret minimisation [42].

SWNE via Labelled Polytopes. Given a bimatrix game Z1,Z2 ∈ Rl×m, we
denote the sets of deterministic strategies of players 1 and 2 by I={1, . . . , l} and
M={1, . . . ,m} and define J={l+1, . . . , l+m} by mapping j ∈M to l+j ∈ J . A
label is then defined as element of I ∪ J . The sets of strategies for players 1 and
2 can be represented by:

X = {x ∈ Rl | 1x = 1 ∧ x > 0} and Y = {y ∈ Rm | 1y = 1 ∧ y > 0} .

The strategy set Y is then divided into regions Y (i) and Y (j) (polytopes) for
i ∈ I and j ∈ J such that Y (i) contains strategies for which the deterministic
strategy i of player 1 is a best response and Y (j) contain strategies which choose
action j with probability zero:

Y (i) = {y ∈ Y | ∀k ∈ I. Z1(i, :)y > Z1(k, :)y} and Y (j) = {y = Y | yj−l = 0}
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where Z1(i, :) is the ith row vector of Z1. A vector y is then said to have label k
if y ∈ Y (k), for k ∈ I ∪J . The strategy set X is divided analogously into regions
X(j) and X(i) for j ∈ J and i ∈ I and a vector x has label k if x ∈ X(k), for
k ∈ I ∪ J . A pair of vectors (x, y) ∈ X×Y is completely labelled if the union of
the labels of x and y equals I ∪ J . The Nash equilibria of the game equal the
vector pairs that are completely labelled [33,44].

Once all completely labelled vector pairs have been computed, one can cal-
culate the corresponding set of values through matrix-vector multiplication. The
pairs that maximise the sum of values correspond to SWNE strategies. In case
of multiple SWNEs, we choose the values that are maximal for the first player,
unless both players can get equal payoff, in which case we choose these.

Computing Values of Nash Formulae. For a formula 〈〈C:C ′〉〉max∼x(θ), if
the objectives of the non-zero sum formula θ are both finite-horizon, we can use
backwards induction [43,36] to compute (precise) subgame perfect SWNE values.
Below, we give the cases for bounded probabilistic reachability and bounded
cumulative reward objectives; the remaining cases can be found in [30]. If both
of the objectives are infinite-horizon, we use value iteration [15] to approximate
subgame perfect SWNE values. Since there is not necessarily a unique pair of
such values, the convergence criterion is applied to the sum of the two values
computed, which is unique. Below, we give details for probabilistic and expected
reachability objectives; the remaining cases can be found in [30]. Finally, for
cases where there is a combination of finite- and infinite-horizon objectives, we
convert to having both infinite-horizon by modifying the game and formula in a
standard manner for probabilistic model checking; see [30] for the construction.
The two key aspects of the value iteration algorithm are using SWNE to ensure
uniqueness and solving an MDP when the target of one player has been reached.

We use the notation VGC (s, θ) for SWNE values of the objectives (Xθ
1 , X

θ
2 ) in

state s of GC . We also use Pmax
G,s (ψ) and Rmax

G,s (r, ρ) for the maximum probability of
satisfying ψ and maximum expected reward for the random variable rew(r, ρ),
respectively, in state s when all players collaborate. These can be computed
through standard MDP model checking [7,1].

Bounded Probabilistic Reachability. If θ=P[ F6k1 φ1 ]+P[ F6k2 φ2 ], then we
compute values of the objectives for the formulae θn+n1,n+n2

= P[ F6n+n1 φ1 ] +
P[ F6n+n2 φ2 ] for 06n6k recursively, where k= min{k1, k2}, n1=k1−k and n2 =
k2−k. For state s, if n=0:

VGC (s, θn1,n2) =


(ηφ1(s), ηφ2(s)) if n1=n2=0

(ηφ1(s), Pmax
G,s (F6n2 φ2) else if n1=0

(Pmax
G,s (F6n1 φ1), ηφ2(s)) otherwise

and if n>0:

VGC (s, θn+n1,n+n2
) =


(1, 1) if s ∈ Sat(φ1) ∩ Sat(φ2)

(1, Pmax
G,s (F6n+n2 φ2)) else if s ∈ Sat(φ1)

(Pmax
G,s (F6n+n1 φ1), 1) else if s ∈ Sat(φ2)

val(Z1,Z2) otherwise
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where ηφi(s) equals 1 if s ∈ Sat(φi) and 0 otherwise for 16i62, and val(Z1,Z2)
equals SWNE values of the bimatrix game (Z1,Z2) ∈ Rl×m:

zli,j =
∑
s′∈S δ(s, (ai, bj))(s

′) · vs
′,l

(n−1)+nl

16l62 and (vs
′,1

(n−1)+n1
, vs
′,2

(n−1)+n2
) = VGC (s′, θ(n−1)+n1,(n−1)+n2

) for all s′ ∈ S.

Bounded Cumulative Rewards. If θ = Rr1 [ C6k1 ]+Rr2 [ C6k2 ], then we com-
pute values of the objectives for the formulae θn+n1,n+n2 = Rr1 [ C6n+n1 ] +
Rr2 [ C6n+n2 ] for 06n6k recursively, where k= min{k1, k2}, n1=k1−k and n2 =
k2−k. For state s, if n=0:

VGC (s, θn1,n2
) =


(0, 0) if n1=n2=0

(0, Rmax
G,s (r2, C

6n2)) else if n1=0

(Rmax
G,s (r1, C

6n1), 0) otherwise

and if n>0, then VGC (s, θn+n1,n+n2
) equals SWNE values of the bimatrix game

(Z1,Z2) ∈ Rl×m:

zli,j = rlS(s) + rlA(s, (ai, bj)) +
∑
s′∈S δ(s, (ai, bj))(s

′) · vs
′,l

(n−1)+nl

16l62 and (vs
′,1

(n−1)+n1
, vs
′,2

(n−1)+n2
) = VGC (s′, θ(n−1)+n1,(n−1)+n2

) for all s′ ∈ S.

Probabilistic Reachability. If θ = P[ F φ1 ]+P[ F φ2 ], values can be computed
through value iteration as the limit VGC (s, θ) = limn→∞ VGC (s, θ, n) where:

VGC (s, θ, n) =


(1, 1) if s ∈ Sat(φ1) ∩ Sat(φ2)

(1, Pmax
G,s (F φ2)) else if s ∈ Sat(φ1)

(Pmax
G,s (F φ1), 1) else if s ∈ Sat(φ2)

(0, 0) else if n=0
val(Z1,Z2) otherwise

where val(Z1,Z2) equals SWNE values of the bimatrix game (Z1,Z2) ∈ Rl×m:

zli,j =
∑
s′∈S δ(s, (ai, bj))(s

′) · vs
′,l
n−1

16l62 and (vs
′,1
n−1, v

s′,2
n−1) = VGC (s′, θ, n−1) for all s′ ∈ S.

Expected Reachability. If θ = Rr1 [ F φ1 ]+Rr2 [ F φ2 ], values can be computed
through value iteration as the limit VGC (s, θ) = limn→∞ VGC (s, θ, n) where:

VGC (s, θ, n) =


(0, 0) if s ∈ Sat(φ1) ∩ Sat(φ2) or n=0

(0, Rmax
G,s (r2, F φ

2)) else if s ∈ Sat(φ1)

(Rmax
G,s (r1, F φ

1), 0) else if s ∈ Sat(φ2)

val(Z1,Z2) otherwise

where val(Z1,Z2) equals SWNE values of the bimatrix game (Z1,Z2) ∈ Rl×m:

zli,j = rlS(s) + rlA(s, (ai, bj)) +
∑
s′∈S δ(s, (ai, bj))(s

′) · vs
′,l
n−1
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16l62 and (vs
′,1
n−1, v

s′,2
n−1) = VGC (s′, θ, n−1) for all s′ ∈ S.

Strategy Synthesis. In addition to property verification, it is usually beneficial
to perform strategy synthesis, that is, construct a witness of the satisfaction of
a property. In the case of a formula 〈〈C:C ′〉〉max∼x(θ), we can return a subgame
perfect SWNE for the objectives (Xθ

1 , X
θ
2 ). This is achieved using the approach

above, both keeping track of a SWNE for the bimatrix game solved in each state
and, when computing optimal values for MDPs, also performing strategy syn-
thesis [31] (a strategy of the MDP is equivalent to a strategy profile of the CSG).
We can then combine these generated profiles to yield a subgame perfect SWNE.
The synthesised strategies require randomisation and memory. Memory is needed
since choices change after a path formulae becomes true or a target reached and
is required for finite-horizon properties. For infinite-horizon properties, the use of
value iteration means only approximate ε-NE profiles are synthesised. However,
for the case studies in Section 6, we find that all synthesised profiles are NE.

Correctness and Complexity. The proof of correctness is given in the ex-
tended version of the paper [30] and shows that the values computed during
value iteration correspond to subgame perfect SWNE values of finite game trees,
and the values of these game trees converge uniformly and are bounded from
below and above by the finite approximations of GC and actual values of GC , re-
spectively. A limitation of our approach, as for standard value iteration [22,26],
is that convergence of the values does not give guarantees on the precision.
Complexity is linear in the size of the formula, while finding NE for reachability
objectives is EXPTIME [12]. Value iteration requires solving an LCP problem of
size |A| for each state at every iteration, with the number of iterations depending
on the convergence criterion. Section 6 reports on efficiency in practice.

5 Implementation and Tool Support

We have extended PRISM-games [32] with support for modelling and verification
of CSGs against equilibria-based properties, building upon the CSG extension
of [29]. The tool and files for the case studies of Section 6 are available from [47].

Modelling. CSGs are specified using an extension of the PRISM modelling
language, in which behaviour is defined using probabilistic guarded commands
of the form [a] g → u, where a is an action label, g is a guard (a predicate over
states) and u is a probabilistic state update. If it is enabled (i.e., g is true), an
a-labelled transition can probabilistically update the model’s state.

This language is adapted to CSGs in [29] by assigning modules to players
and, in any state, letting each player choose between enabled commands of the
corresponding modules (if no command is enabled, the player idles). One require-
ment of [29] was that the updates of all player were independent of each other;
we extend the language to remove this requirement, by allowing commands to
be labelled with lists of actions [a1, . . . , an], and thus represent behaviour de-
pendent on other players’ choices. Rewards are extended similarly so that an
individual player’s rewards can depend on the choices taken by multiple players.
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Case study & property Param. CSG statistics Constr. Verif. time (s)
[parameters] values Players States Choices Trans. time(s) MDP CSG

Aloha
P[ F sent1 ]+P[ F sent2,3 ]

[bmax ,D]

2,8 3 17,057 19,713 42,654 0.6 0.6 21.4
3,8 3 89,114 97,326 264,172 2.2 2.1 32.8
4,8 3 449,766 474,898 1,655,479 10.9 10.6 49.9
5,8 3 2,308,349 2,385,537 10,362,711 97.7 90.0 121.7

Robot coordination

P[ F6kgoal1 ]+P[ F6kgoal2 ]

[l,k]

10,10 3 9,802 66,514 543,524 1.4 2.0 27.2
15,15 3 50,177 375,549 3,175,539 5.0 19.8 131.8
20,20 3 159,202 1,249,434 10,738,004 15.4 136.3 928.7
25,25 3 389,377 3,142,669 27,267,419 48.3 548.8 4,837.0

Medium access control

Rr1 [ C6k ]+Rr2 [ C6k ]

[emax ,k ]

10,20 2 441 1,600 2,759 0.1 - 17.2
20,40 2 1,681 6,400 11,119 0.2 - 127.5
40,80 2 6,561 25,600 44,639 0.7 - 991.7

80,160 2 25,921 102,400 178,879 1.3 - 6,937.0

Power control
Rr1 [ F e1=0 ]+Rr2 [ F e2=0 ]

[emax ,k ]

4,20 2 2,346 6,802 13,574 0.2 0.2 3.0
4,40 2 10,746 30,700 60,854 0.4 1.0 12.7
8,20 2 4,010 14,545 31,654 0.3 0.4 5.2
8,40 2 32,812 119,694 260,924 1.2 3.9 64.8

Table 1: Statistics for a representative set of CSG verification instances.

Implementation. We have implemented model construction of CSGs for the
language described above, and the model checking and strategy synthesis al-
gorithms of Section 4, extending the PRISM-games implementation of rPATL
verification [29]. We build on PRISM’s Java-based ‘explicit’ engine which uses
sparse matrices, and add an SMT-based implementation for solving bimatrix
games using Z3 [19]. The set of all Nash equilibria for a bimatrix game are found
by progressively querying the SMT solver for new profiles until the model be-
comes unsatisfiable. Structuring the problem using labelled polytopes, which can
be expressed through conjunctions, disjunctions and linear inequalities, avoids
non-linear arithmetic. As an optimisation, we also search for and filter out dom-
inated strategies as a precomputation step to reduce the calls to the solver.

6 Case Studies and Experimental Results

We now present case studies and results to demonstrate the applicability of our
approach and implementation, as well as the benefits of using equilibria.

Efficiency and Scalability. Before describing the case studies, we first discuss
the performance of the implementation. In Table 1, we show experiments run
on a 2.10 GHz Intel Xeon using 16GB RAM. The table includes model statistics
(players, states and transitions) and the time to construct the CSG and verify
it; the latter is split between CSG verification (including solving the bimatrix
games) and the instances of MDP verification. Our tool can analyse models
with over 2 million states and 20 million transitions; all are solved in under 2
hours and most are considerably quicker. However, for models where players have
choices in almost all states, only models with up to tens of thousands of states
can be verified within 2 hours. The majority of the time is spent solving bimatrix
games, and therefore it is the number of choices of each coalition, rather than
the number of players, that affects performance.

Investigating the Benefits of Equilibria Properties. In each case study,
we compare our results with the corresponding zero-sum properties [29]. E.g., for
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Fig. 2: Robot coordination: 〈〈p1:p2〉〉max=?(P[ F6k goal1 ]+P[ F6k goal2 ]) (q=0.1)

〈〈C:C ′〉〉max=?(P[ F φ1 ]+P[ F φ2 ]), we compute the value and an optimal strategy
σC for coalition C of the formula 〈〈C〉〉Pmax=?[ F φ1 ], and then find the value
of an optimal strategy for the coalition C ′ for Pmin=?[ F φ2 ] and Pmax=?[ F φ2 ]
in the MDP induced by CSG when C follows σC . The aim is to showcase the
advantages of cooperation as, in many real-world applications, agents’ goals are
not strictly opposed. As will be seen, all the presented results demonstrate that
by using equilibrium properties at least one of the players gains and in almost
all cases neither player loses (in the one case study where this is not the case the
gains far outweigh the losses). The individual SWNE values for players need not
be unique and, for all case studies (except Aloha in which the players goals are
not symmetric), the values can be swapped to give alternative SWNE values.

Robot Coordination. Our first case study models a scenario in which two
robots move concurrently over a grid of size l×l. The robots start in diagonally
opposite corners and try to reach the corner from which the other starts. A robot
can move either diagonally, horizontally or vertically towards its goal and when
it moves there is a probability (q) that it instead moves in an adjacent direction.
E.g., if a robot moves north east, then with probability q/2 it will move north or
east. If the robots enter the same cell, they crash and are unable to move again.

We suppose the robots try to maximise the probability of reaching their
individual goals eventually and within a given number of steps (k). If there is
no bound and l>4, the SWNE strategies allow each robot to reach its goal with
probability 1 (as time is not an issue, they can collaborate to avoid crashing). For
the bounded case, in Figure 2 we have plotted both the sum of the probabilities
for a grid of size 10 (left) and the probabilities of the individual players for
different grid sizes (right) as k varies. When there is only one route to each goal
within the bound (along the diagonal), i.e. when k = l−1, the SWNE strategies
of both robots take this route. In odd grids, there is a high chance of crashing,
but also a chance one will deviate and the other reaches their goal. Initially, as
the bound k increases, for odd grids the SWNE values for the players are not
equal (see Figure 2 right). Here, it is better overall for one to follow the diagonal
and the other to take a longer route, as if both took the diagonal route, the
chance of crashing increases, decreasing the chance of reaching their goals.

Aloha. This case study concerns three users trying to send packets using the
slotted ALOHA protocol. In a time slot, if a single user tries to send a packet,
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there is a probability (q) that the packet is sent; as more users try and send,
then the probability of success decreases. If sending a packet fails, the number
of slots a user waits before resending is set according to an exponential backoff
scheme. More precisely, each user maintains a backoff counter which it increases
each time there is a failure (up to bmax ) and, if the counter equals k, randomly
chooses the slots to wait from {0, 1, . . . , 2k−1}.

We suppose three users try to maximise the probability of sending packets
before a deadline D, with users 2 and 3 forming a coalition. Figure 3 presents
total values as D varies (left) and individual values as q varies (right). Through
synthesis, we find the collaboration is dependent on D and q. Given more time
there is more chance for the users to collaborate sending in different slots, while if
q is large it is unlikely users need to repeatedly send, so again can send in different
slots. As the coalition has more messages to send, their probabilities are lower.
However, even for two users, the probabilities are different, since, although it is
advantageous to collaborate and only one user tries first, if transmission fails,
then both users try to send as this is the best option for their individual goals.

Medium Access Control. Our third case study extends the CSG model from
Example 2 by assuming the probability of a successful transmission when a single
user tries to transmit equals q1 and the energy of each user is bounded by emax .

We consider two Nash properties for this model, both bounded by the num-
ber of time slots (k). The goal for each user in the first property is to maximise
their expected number of successful transmissions and the second to maximise
the probability of successfully transmitting a certain number (smax ) of messages.
Figure 4 presents results for these properties as the bound k varies. For both
properties, the SWNE strategies yield equal values for the players. Synthesising
strategies we see that for small values of k there is not sufficient time to col-
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laborate (both users always try and transmit); however, as k increases there is
time for the users to collaborate and try to transmit in different slots, and hence
improve their values. Since the users have limited energy, Figure 4 shows that
eventually adding steps does not increase the reward or probability.

Power Control. Our final case study is based a model of power control in cellu-
lar networks from [10]. In the model, phones emit signals over a cellular network
and the signals can be strengthened by increasing the power level up to a bound
(powmax ). A stronger signal can improve transmission quality, but uses more en-
ergy and lowers the quality of other transmissions due to interference. We extend
this model by adding a failure probability (qfail) when a power level is increased
and assume each phone has a limited battery capacity (emax ). Based on [10], we
associate a reward structure with each phone representing transmission quality
dependent both on its power level and that of other phones due to interference.

We consider two players, each trying to maximise their reward before their
battery is empty. Figure 5 presents, for pmax=5 and emax=5, the sum of the
SWNE values (left) and the values of the individual players (right) as the battery
capacity varies. The values of the players are different because if one increases
their power level this increases the overall reward (their reward increases, while
the other’s decreases by a lesser amount due to interference), whereas if both
increase the overall reward decreases (both rewards decrease due to interference).

7 Conclusions

We have presented a logic, algorithms and tool for model checking and strategy
synthesis of concurrent stochastic games using Nash equilibria-based properties.
In comparison to existing methods, which support only zero-sum properties, we
demonstrate, on a range of case studies, that our approach produces strategies
that are collectively more beneficial for all players in the game. Future work
will investigate other techniques for Nash equilibria synthesis, non-coalitional
multi-player games and mechanism design.
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version of this paper for finding a flaw in the correctness proof.



16 Kwiatkowska, Norman, Parker, Santos

References

1. de Alfaro, L.: Computing minimum and maximum reachability times in proba-
bilistic systems. In: Proc. CONCUR’99, LNCS, vol. 1664, pp. 66–81. Springer
(1999)

2. de Alfaro, L., Henzinger, T., Kupferman, O.: Concurrent reachability games. The-
oretical Computer Science 386(3), 188–217 (2007)

3. de Alfaro, L., Majumdar, R.: Quantitative solution of omega-regular games. Jour-
nal of Computer and System Sciences 68(2), 374–397 (2004)

4. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Jour-
nal of the ACM 49(5), 672–713 (2002)
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