41 research outputs found

    PolIVb influences RNA-directed DNA methylation independently of its role in siRNA biogenesis.

    Get PDF
    Comparative StudyJournal ArticleResearch Support, Non-U.S. Gov'tThis article contains supporting information online at www.pnas.org/cgi/content/full/0709632105/DC1. Freely available online through the PNAS open access option. © 2008 by The National Academy of Sciences of the USADNA-dependent RNA polymerase (Pol)IV in Arabidopsis exists in two isoforms (PolIVa and PolIVb), with NRPD1a and NRPD1b as their respective largest subunits. Both isoforms are implicated in production and activity of siRNAs and in RNA-directed DNA methylation (RdDM). Deep sequence analysis of siRNAs in WT Arabidopsis flowers and in nrpd1a and nrpd1b mutants identified >4,200 loci producing siRNAs in a PolIV-dependent manner, with PolIVb reinforcing siRNA production by PolIVa. Transposable element identity and pericentromeric localization are both features that predispose a locus for siRNA production via PolIV proteins and determine the extent to which siRNA production relies on PolIVb. Detailed analysis of DNA methylation at PolIV-dependent loci revealed unexpected deviations from the previously noted association of PolIVb-dependent siRNA production and RdDM. Notably, PolIVb functions independently in DNA methylation and siRNA generation. Additionally, we have uncovered siRNA-directed loss of DNA methylation, a process requiring both PolIV isoforms. From these findings, we infer that the role of PolIVb in siRNA production is secondary to a role in chromatin modification and is influenced by chromatin context

    An enhanced toolkit for the generation of knockout and marker-free fluorescent Plasmodium chabaudi.

    Get PDF
    The rodent parasite Plasmodium chabaudi is an important in vivo model of malaria. The ability to produce chronic infections makes it particularly useful for investigating the development of anti- Plasmodium immunity, as well as features associated with parasite virulence during both the acute and chronic phases of infection. P. chabaudi also undergoes asexual maturation (schizogony) and erythrocyte invasion in culture, so offers an experimentally-amenable in vivo to in vitro model for studying gene function and drug activity during parasite replication. To extend the usefulness of this model, we have further optimised transfection protocols and plasmids for P. chabaudi and generated stable, fluorescent lines that are free from drug-selectable marker genes. These mother-lines show the same infection dynamics as wild-type parasites throughout the lifecycle in mice and mosquitoes; furthermore, their virulence can be increased by serial blood passage and reset by mosquito transmission. We have also adapted the large-insert, linear PlasmoGEM vectors that have revolutionised the scale of experimental genetics in another rodent malaria parasite and used these to generate barcoded P. chabaudi gene-deletion and -tagging vectors for transfection in our fluorescent P. chabaudi mother-lines. This produces a tool-kit of P. chabaudi lines, vectors and transfection approaches that will be of broad utility to the research community

    Functional Profiling of a Plasmodium Genome Reveals an Abundance of Essential Genes

    Get PDF
    The genomes of malaria parasites contain many genes of unknown function. To assist drug development through the identification of essential genes and pathways, we have measured competitive growth rates in mice of 2,578 barcoded Plasmodium berghei knockout mutants, representing >50% of the genome, and created a phenotype database. At a single stage of its complex life cycle, P. berghei requires two-thirds of genes for optimal growth, the highest proportion reported from any organism and a probable consequence of functional optimization necessitated by genomic reductions during the evolution of parasitism. In contrast, extreme functional redundancy has evolved among expanded gene families operating at the parasite-host interface. The level of genetic redundancy in a single-celled organism may thus reflect the degree of environmental variation it experiences. In the case of Plasmodium parasites, this helps rationalize both the relative successes of drugs and the greater difficulty of making an effective vaccine

    The antimalarial efficacy and mechanism of resistance of the novel chemotype DDD01034957.

    Get PDF
    New antimalarial therapeutics are needed to ensure that malaria cases continue to be driven down, as both emerging parasite resistance to frontline chemotherapies and mosquito resistance to current insecticides threaten control programmes. Plasmodium, the apicomplexan parasite responsible for malaria, causes disease pathology through repeated cycles of invasion and replication within host erythrocytes (the asexual cycle). Antimalarial drugs primarily target this cycle, seeking to reduce parasite burden within the host as fast as possible and to supress recrudescence for as long as possible. Intense phenotypic drug screening efforts have identified a number of promising new antimalarial molecules. Particularly important is the identification of compounds with new modes of action within the parasite to combat existing drug resistance and suitable for formulation of efficacious combination therapies. Here we detail the antimalarial properties of DDD01034957-a novel antimalarial molecule which is fast-acting and potent against drug resistant strains in vitro, shows activity in vivo, and possesses a resistance mechanism linked to the membrane transporter PfABCI3. These data support further medicinal chemistry lead-optimization of DDD01034957 as a novel antimalarial chemical class and provide new insights to further reduce in vivo metabolic clearance

    A forward genetic screen reveals a primary role for Plasmodium falciparum Reticulocyte Binding Protein Homologue 2a and 2b in determining alternative erythrocyte invasion pathways.

    Get PDF
    Invasion of human erythrocytes is essential for Plasmodium falciparum parasite survival and pathogenesis, and is also a complex phenotype. While some later steps in invasion appear to be invariant and essential, the earlier steps of recognition are controlled by a series of redundant, and only partially understood, receptor-ligand interactions. Reverse genetic analysis of laboratory adapted strains has identified multiple genes that when deleted can alter invasion, but how the relative contributions of each gene translate to the phenotypes of clinical isolates is far from clear. We used a forward genetic approach to identify genes responsible for variable erythrocyte invasion by phenotyping the parents and progeny of previously generated experimental genetic crosses. Linkage analysis using whole genome sequencing data revealed a single major locus was responsible for the majority of phenotypic variation in two invasion pathways. This locus contained the PfRh2a and PfRh2b genes, members of one of the major invasion ligand gene families, but not widely thought to play such a prominent role in specifying invasion phenotypes. Variation in invasion pathways was linked to significant differences in PfRh2a and PfRh2b expression between parasite lines, and their role in specifying alternative invasion was confirmed by CRISPR-Cas9-mediated genome editing. Expansion of the analysis to a large set of clinical P. falciparum isolates revealed common deletions, suggesting that variation at this locus is a major cause of invasion phenotypic variation in the endemic setting. This work has implications for blood-stage vaccine development and will help inform the design and location of future large-scale studies of invasion in clinical isolates

    Regulators of male and female sexual development are critical for the transmission of a malaria parasite

    Get PDF
    Malaria transmission to mosquitoes requires a developmental switch in asexually dividing blood-stage parasites to sexual reproduction. In Plasmodium berghei, the transcription factor AP2-G is required and sufficient for this switch, but how a particular sex is determined in a haploid parasite remains unknown. Using a global screen of barcoded mutants, we here identify genes essential for the formation of either male or female sexual forms and validate their importance for transmission. High-resolution single-cell transcriptomics of ten mutant parasites portrays the developmental bifurcation and reveals a regulatory cascade of putative gene functions in the determination and subsequent differentiation of each sex. A male-determining gene with a LOTUS/OST-HTH domain as well as the protein interactors of a female-determining zinc-finger protein indicate that germ-granule-like ribonucleoprotein complexes complement transcriptional processes in the regulation of both male and female development of a malaria parasite

    A plasmodium calcium-dependent protein kinase controls zygote development and transmission by translationally activating repressed mRNAs

    Get PDF
    Calcium-dependent protein kinases (CDPKs) play key regulatory roles in the life cycle of the malaria parasite, but in many cases their precise molecular functions are unknown. Using the rodent malaria parasite Plasmodium berghei, we show that CDPK1, which is known to be essential in the asexual blood stage of the parasite, is expressed in all life stages and is indispensable during the sexual mosquito life-cycle stages. Knockdown of CDPK1 in sexual stages resulted in developmentally arrested parasites and prevented mosquito transmission, and these effects were independent of the previously proposed function for CDPK1 in regulating parasite motility. In-depth translational and transcriptional profiling of arrested parasites revealed that CDPK1 translationally activates mRNA species in the developing zygote that in macrogametes remain repressed via their 3′ and 5′UTRs. These findings indicate that CDPK1 is a multifunctional protein that translationally regulates mRNAs to ensure timely and stage-specific protein expression

    A genome-scale vector resource enables high-throughput reverse genetic screening in a malaria parasite

    Get PDF
    The genome-wide identification of gene functions in malaria parasites is hampered by a lack of reverse genetic screening methods. We present a large-scale resource of barcoded vectors with long homology arms for effective modification of the Plasmodium berghei genome. Cotransfecting dozens of vectors into the haploid blood stages creates complex pools of barcoded mutants, whose competitive fitness can be measured during infection of a single mouse using barcode sequencing (barseq). To validate the utility of this resource, we rescreen the P. berghei kinome, using published kinome screens for comparison. We find that several protein kinases function redundantly in asexual blood stages and confirm the targetability of kinases cdpk1, gsk3, tkl3, and PBANKA_082960 by genotyping cloned mutants. Thus, parallel phenotyping of barcoded mutants unlocks the power of reverse genetic screening for a malaria parasite and will enable the systematic identification of genes essential for in vivo parasite growth and transmission
    corecore