243 research outputs found

    Interplay of DNA supercoiling and catenation during the segregation of sister duplexes

    Get PDF
    The discrete regulation of supercoiling, catenation and knotting by DNA topoisomerases is well documented both in vivo and in vitro, but the interplay between them is still poorly understood. Here we studied DNA catenanes of bacterial plasmids arising as a result of DNA replication in Escherichia coli cells whose topoisomerase IV activity was inhibited. We combined high-resolution two-dimensional agarose gel electrophoresis with numerical simulations in order to better understand the relationship between the negative supercoiling of DNA generated by DNA gyrase and the DNA interlinking resulting from replication of circular DNA molecules. We showed that in those replication intermediates formed in vivo, catenation and negative supercoiling compete with each other. In interlinked molecules with high catenation numbers negative supercoiling is greatly limited. However, when interlinking decreases, as required for the segregation of newly replicated sister duplexes, their negative supercoiling increases. This observation indicates that negative supercoiling plays an active role during progressive decatenation of newly replicated DNA molecules in vivo

    The genome of Streptococcus pneumoniae is organized in topology-reacting gene clusters

    Get PDF
    The transcriptional response of Streptococcus pneumoniae was examined after exposure to the GyrB-inhibitor novobiocin. Topoisomer distributions of an internal plasmid confirmed DNA relaxation and recovery of the native level of supercoiling at low novobiocin concentrations. This was due to the up-regulation of DNA gyrase and the down-regulation of topoisomerases I and IV. In addition, >13% of the genome exhibited relaxation-dependent transcription. The majority of the responsive genes (>68%) fell into 15 physical clusters (14.6–85.6 kb) that underwent coordinated regulation, independently of operon organization. These genomic clusters correlated with AT content and codon composition, showing the chromosome to be organized into topology-reacting gene clusters that respond to DNA supercoiling. In particular, down-regulated clusters were flanked by 11–40 kb AT-rich zones that might have a putative structural function. This is the first case where genes responding to changes in the level of supercoiling in a coordinated manner were found organized as functional clusters. Such an organization revealed DNA supercoiling as a general feature that controls gene expression superimposed on other kinds of more specific regulatory mechanisms

    Nanotopographical induction of osteogenesis through adhesion, bone morphogenic protein cosignaling, and regulation of microRNAs

    Get PDF
    It is emerging that nanotopographical information can be used to induce osteogenesis from mesenchymal stromal cells from the bone marrow and it is hoped that this nanoscale bioactivity can be utilized to engineer next generation implants. However, the osteogenic mechanism of surfaces is currently poorly understood. In this report, we investigate mechanism and implicate bone morphogenic protein (BMP) in up-regulation of RUNX2 and show that RUNX2 and its regulatory miRNAs are BMP sensitive. Our data demonstrates that osteogenic nanotopography promotes co-localization of intergrins and BMP2 receptors in order to enhance osteogenic activity and that vitronectin is important in this interface. This provides insight that topographical regulation of adhesion can have effects on signaling cascades outside of cytoskeletal signaling and that adhesions can have roles in augmenting BMP signaling

    Integrated Genomic and Gene Expression Profiling Identifies Two Major Genomic Circuits in Urothelial Carcinoma

    Get PDF
    Similar to other malignancies, urothelial carcinoma (UC) is characterized by specific recurrent chromosomal aberrations and gene mutations. However, the interconnection between specific genomic alterations, and how patterns of chromosomal alterations adhere to different molecular subgroups of UC, is less clear. We applied tiling resolution array CGH to 146 cases of UC and identified a number of regions harboring recurrent focal genomic amplifications and deletions. Several potential oncogenes were included in the amplified regions, including known oncogenes like E2F3, CCND1, and CCNE1, as well as new candidate genes, such as SETDB1 (1q21), and BCL2L1 (20q11). We next combined genome profiling with global gene expression, gene mutation, and protein expression data and identified two major genomic circuits operating in urothelial carcinoma. The first circuit was characterized by FGFR3 alterations, overexpression of CCND1, and 9q and CDKN2A deletions. The second circuit was defined by E3F3 amplifications and RB1 deletions, as well as gains of 5p, deletions at PTEN and 2q36, 16q, 20q, and elevated CDKN2A levels. TP53/MDM2 alterations were common for advanced tumors within the two circuits. Our data also suggest a possible RAS/RAF circuit. The tumors with worst prognosis showed a gene expression profile that indicated a keratinized phenotype. Taken together, our integrative approach revealed at least two separate networks of genomic alterations linked to the molecular diversity seen in UC, and that these circuits may reflect distinct pathways of tumor development

    Defining the Sister Rat Mammary Tumor Cell Lines HH-16 cl.2/1 and HH-16.cl.4 as an In Vitro Cell Model for Erbb2

    Get PDF
    Cancer cell lines have been shown to be reliable tools in genetic studies of breast cancer, and the characterization of these lines indicates that they are good models for studying the biological mechanisms underlying this disease. Here, we describe the molecular cytogenetic/genetic characterization of two sister rat mammary tumor cell lines, HH-16 cl.2/1 and HH-16.cl.4, for the first time. Molecular cytogenetic analysis using rat and mouse chromosome paint probes and BAC/PAC clones allowed the characterization of clonal chromosome rearrangements; moreover, this strategy assisted in revealing detected breakpoint regions and complex chromosome rearrangements. This comprehensive cytogenetic analysis revealed an increase in the number of copies of the Mycn and Erbb2 genes in the investigated cell lines. To analyze its possible correlation with expression changes, relative RNA expression was assessed by real-time reverse transcription quantitative PCR and RNA FISH. Erbb2 was found to be overexpressed in HH-16.cl.4, but not in the sister cell line HH-16 cl.2/1, even though these lines share the same initial genetic environment. Moreover, the relative expression of Erbb2 decreased after global genome demethylation in the HH-16.cl.4 cell line. As these cell lines are commercially available and have been used in previous studies, the present detailed characterization improves their value as an in vitro cell model. We believe that the development of appropriate in vitro cell models for breast cancer is of crucial importance for revealing the genetic and cellular pathways underlying this neoplasy and for employing them as experimental tools to assist in the generation of new biotherapies

    Chronic non-transmural infarction has a delayed recovery of function following revascularization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The time course of regional functional recovery following revascularization with regards to the presence or absence of infarction is poorly known. We studied the effect of the presence of chronic non-transmural infarction on the time course of recovery of myocardial perfusion and function after elective revascularization.</p> <p>Methods</p> <p>Eighteen patients (mean age 69, range 52-84, 17 men) prospectively underwent cine magnetic resonance imaging (MRI), delayed contrast enhanced MRI and rest/stress 99m-Tc-tetrofosmin single photon emission computed tomography (SPECT) before, one and six months after elective coronary artery bypass grafting (CABG) or percutaneous coronary intervention (PCI).</p> <p>Results</p> <p>Dysfunctional myocardial segments (n = 337/864, 39%) were classified according to the presence (n = 164) or absence (n = 173) of infarction. Infarct transmurality in dysfunctional segments was largely non-transmural (transmurality = 31 ± 22%). Quantitative stress perfusion and wall thickening increased at one month in dysfunctional segments without infarction (p < 0.001), with no further improvement at six months. Despite improvements in stress perfusion at one month (p < 0.001), non-transmural infarction displayed a slower and lesser improvement in wall thickening at one (p < 0.05) and six months (p < 0.001).</p> <p>Conclusions</p> <p>Dysfunctional segments without infarction represent repetitively stunned or hibernating myocardium, and these segments improved both perfusion and function within one month after revascularization with no improvement thereafter. Although dysfunctional segments with non-transmural infarction improved in perfusion at one month, functional recovery was mostly seen between one and six months, possibly reflecting a more severe ischemic burden. These findings may be of value in the clinical assessment of regional functional recovery in the time period after revascularization.</p

    Radionuclide Imaging of Viable Myocardium: Is it Underutilized?

    Get PDF
    Coronary artery disease is the major cause of heart failure in North America. Viability assessment is important as it aims to identify patients who stand to benefit from coronary revascularization. Radionuclide modalities currently used in the assessment of viability include 201Tl SPECT, 99mTc-based SPECT imaging, and 18F-fluorodexoyglucose (18F-FDG)-PET imaging. Different advances have been made in the last year to improve the sensitivity and specificity of these modalities. In addition, the optimum amount of viable (yet dysfunctional) myocardium is important to identify in patients, as a risk–benefit ratio must be considered. Patients with predominantly viable/hibernating myocardium can benefit from revascularization from a mortality and morbidity standpoint. However, in patients with minimal viability (predominantly scarred myocardium), revascularization risk may certainly be too high to justify revascularization without expected benefit. Understanding different radionuclide modalities and new developments in the assessment of viability in ischemic heart failure patients is the focus of this discussion

    Karyotypic Determinants of Chromosome Instability in Aneuploid Budding Yeast

    Get PDF
    Recent studies in cancer cells and budding yeast demonstrated that aneuploidy, the state of having abnormal chromosome numbers, correlates with elevated chromosome instability (CIN), i.e. the propensity of gaining and losing chromosomes at a high frequency. Here we have investigated ploidy- and chromosome-specific determinants underlying aneuploidy-induced CIN by observing karyotype dynamics in fully isogenic aneuploid yeast strains with ploidies between 1N and 2N obtained through a random meiotic process. The aneuploid strains exhibited various levels of whole-chromosome instability (i.e. chromosome gains and losses). CIN correlates with cellular ploidy in an unexpected way: cells with a chromosomal content close to the haploid state are significantly more stable than cells displaying an apparent ploidy between 1.5 and 2N. We propose that the capacity for accurate chromosome segregation by the mitotic system does not scale continuously with an increasing number of chromosomes, but may occur via discrete steps each time a full set of chromosomes is added to the genome. On top of such general ploidy-related effect, CIN is also associated with the presence of specific aneuploid chromosomes as well as dosage imbalance between specific chromosome pairs. Our findings potentially help reconcile the divide between gene-centric versus genome-centric theories in cancer evolution
    corecore