496 research outputs found

    Event-by-Event Fluctuations in Particle Multiplicities and Transverse Energy Produced in 158.A GeV Pb+Pb collisions

    Get PDF
    Event-by-event fluctuations in the multiplicities of charged particles and photons, and the total transverse energy in 158⋅A\cdot A GeV Pb+Pb collisions are studied for a wide range of centralities. For narrow centrality bins the multiplicity and transverse energy distributions are found to be near perfect Gaussians. The effect of detector acceptance on the multiplicity fluctuations has been studied and demonstrated to follow statistical considerations. The centrality dependence of the charged particle multiplicity fluctuations in the measured data has been found to agree reasonably well with those obtained from a participant model. However for photons the multiplicity fluctuations has been found to be lower compared to those obtained from a participant model. The multiplicity and transverse energy fluctuations have also been compared to those obtained from the VENUS event generator.Comment: To appear in Physical Review C; changes : more detailed discussion on errors and few figures modifie

    Pion Freeze-Out Time in Pb+Pb Collisions at 158 A GeV/c Studied via pi-/pi+ and K-/K+ Ratios

    Get PDF
    The effect of the final state Coulomb interaction on particles produced in Pb+Pb collisions at 158 A GeV/c has been investigated in the WA98 experiment through the study of the pi-/pi+ and K-/K+ ratios measured as a function of transverse mass. While the ratio for kaons shows no significant transverse mass dependence, the pi-/pi+ ratio is enhanced at small transverse mass values with an enhancement that increases with centrality. A silicon pad detector located near the target is used to estimate the contribution of hyperon decays to the pi-/pi+ ratio. The comparison of results with predictions of the RQMD model in which the Coulomb interaction has been incorporated allows to place constraints on the time of the pion freeze-out.Comment: 9 pages, 12 figure

    The status of GEO 600

    Get PDF
    The GEO 600 laser interferometer with 600m armlength is part of a worldwide network of gravitational wave detectors. GEO 600 is unique in having advanced multiple pendulum suspensions with a monolithic last stage and in employing a signal recycled optical design. This paper describes the recent commissioning of the interferometer and its operation in signal recycled mode

    Particle density fluctuations

    Full text link
    Event-by-event fluctuations in the multiplicities of charged particles and photons at SPS energies are discussed. Fluctuations are studied by controlling the centrality of the reaction and rapidity acceptance of the detectors. Results are also presented on the event-by-event study of correlations between the multiplicity of charged particles and photons to search for DCC-like signals.Comment: Talk presented at Quark Matter 2002, Nantes, Franc

    Suppression of High-p_T Neutral Pion Production in Central Pb+Pb Collisions at sqrt{s_NN} = 17.3 GeV Relative to p+C and p+Pb Collisions

    Get PDF
    Neutral pion transverse momentum spectra were measured in p+C and p+Pb collisions at sqrt{s_NN} = 17.4 GeV at mid-rapidity 2.3 < eta_lab < 3.0 over the range 0.7< p_T < 3.5 GeV/c. The spectra are compared to pi0 spectra measured in Pb+Pb collisions at sqrt{s_NN} = 17.3 GeV in the same experiment. For a wide range of Pb+Pb centralities (N_part < 300) the yield of pi0's with p_T > 2 GeV/c is larger than or consistent with the p+C or p+Pb yields scaled with the number of nucleon-nucleon collisions (N_coll), while for central Pb+Pb collisions with N_part > 350 the pi0 yield is suppressed.Comment: 5 pages, 4 figure

    Central Pb+Pb Collisions at 158 A GeV/c Studied by Pion-Pion Interferometry

    Full text link
    Two-particle correlations have been measured for identified negative pions from central 158 AGeV Pb+Pb collisions and fitted radii of about 7 fm in all dimensions have been obtained. A multi-dimensional study of the radii as a function of kT is presented, including a full correction for the resolution effects of the apparatus. The cross term Rout-long of the standard fit in the Longitudinally CoMoving System (LCMS) and the vl parameter of the generalised Yano-Koonin fit are compatible with 0, suggesting that the source undergoes a boost invariant expansion. The shapes of the correlation functions in Qinv and Qspace have been analyzed in detail. They are not Gaussian but better represented by exponentials. As a consequence, fitting Gaussians to these correlation functions may produce different radii depending on the acceptance of the experimental setup used for the measurement.Comment: 13 pages including 10 figure

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change

    Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo

    Get PDF
    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--1.0M⊙1.0 M_\odot. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--1.0M⊙1.0 M_\odot, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.
    • 

    corecore