348 research outputs found
Classical analogous of quantum cosmological perfect fluid models
Quantization in the mini-superspace of a gravity system coupled to a perfect
fluid, leads to a solvable model which implies singularity free solutions
through the construction of a superposition of the wavefunctions. We show that
such models are equivalent to a classical system where, besides the perfect
fluid, a repulsive fluid with an equation of state is present.
This leads to speculate on the true nature of this quantization procedure. A
perturbative analysis of the classical system reveals the condition for the
stability of the classical system in terms of the existence of an anti-gravity
phase.Comment: Latex file, 10 pages, 3 figure
GAMMA-RAY TRANSITION ENERGY CORRELATIONS IN 156Er AND 160Yb
No abstract availabl
Post-Newtonian SPH calculations of binary neutron star coalescence. I. Method and first results
We present the first results from our Post-Newtonian (PN) Smoothed Particle
Hydrodynamics (SPH) code, which has been used to study the coalescence of
binary neutron star (NS) systems. The Lagrangian particle-based code
incorporates consistently all lowest-order (1PN) relativistic effects, as well
as gravitational radiation reaction, the lowest-order dissipative term in
general relativity. We test our code on sequences of single NS models of
varying compactness, and we discuss ways to make PN simulations more relevant
to realistic NS models. We also present a PN SPH relaxation procedure for
constructing equilibrium models of synchronized binaries, and we use these
equilibrium models as initial conditions for our dynamical calculations of
binary coalescence. Though unphysical, since tidal synchronization is not
expected in NS binaries, these initial conditions allow us to compare our PN
work with previous Newtonian results.
We compare calculations with and without 1PN effects, for NS with stiff
equations of state, modeled as polytropes with . We find that 1PN
effects can play a major role in the coalescence, accelerating the final
inspiral and causing a significant misalignment in the binary just prior to
final merging. In addition, the character of the gravitational wave signal is
altered dramatically, showing strong modulation of the exponentially decaying
waveform near the end of the merger. We also discuss briefly the implications
of our results for models of gamma-ray bursts at cosmological distances.Comment: RevTeX, 37 pages, 17 figures, to appear in Phys. Rev. D, minor
corrections onl
Hydrellia lagarosiphon Deeming (Diptera: Ephydridae), a potential biological control agent for the submerged aquatic weed, Lagarosiphon major (Ridl.) Moss ex Wager (Hydrocharitaceae)
The leaf-mining fly, Hydrellia lagarosiphon Deeming (Diptera: Ephydridae), was investigated in its native range in South Africa, to determine its potential as a biological control agent for Lagarosiphon major (Ridl.) Moss ex Wager (Hydrocharitaceae), an invasive submerged macrophyte that is weedy in many parts of the world. The fly was found throughout the indigenous range of the plant in South Africa. High larval abundance was recorded at field sites with nearly all L. major shoots sampled ontaining larvae, with densities of up to 10 larvae per shoot. Adults laid batches of up to 15 eggs, usually on the abaxial sides of L. major leaves. The larvae mined internally, leaving the epidermal tissues of the upper and lower leaves intact. The larvae underwent three instars which took an average of 24 days and pupated within the leaf tissue, from which the adults emerged. Impact studies in the laboratory showed that H. lagarosiphon larval feeding significantly restricted the formation of L. major side branches. Based on its biology and damage caused to the plant, Hydrellia lagarosiphon could be considered as a useful biological control candidate for L. major in countries where the plant is invasive
Multimessenger astronomy with the Einstein Telescope
Gravitational waves (GWs) are expected to play a crucial role in the
development of multimessenger astrophysics. The combination of GW observations
with other astrophysical triggers, such as from gamma-ray and X-ray satellites,
optical/radio telescopes, and neutrino detectors allows us to decipher science
that would otherwise be inaccessible. In this paper, we provide a broad review
from the multimessenger perspective of the science reach offered by the third
generation interferometric GW detectors and by the Einstein Telescope (ET) in
particular. We focus on cosmic transients, and base our estimates on the
results obtained by ET's predecessors GEO, LIGO, and Virgo.Comment: 26 pages. 3 figures. Special issue of GRG on the Einstein Telescope.
Minor corrections include
Proximity effect at superconducting Sn-Bi2Se3 interface
We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions
down to 250 mK and in different magnetic fields. A number of conductance
anomalies were observed below the superconducting transition temperature of Sn,
including a small gap different from that of Sn, and a zero-bias conductance
peak growing up at lower temperatures. We discussed the possible origins of the
smaller gap and the zero-bias conductance peak. These phenomena support that a
proximity-effect-induced chiral superconducting phase is formed at the
interface between the superconducting Sn and the strong spin-orbit coupling
material Bi2Se3.Comment: 7 pages, 8 figure
Heavy Quarks and Heavy Quarkonia as Tests of Thermalization
We present here a brief summary of new results on heavy quarks and heavy
quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma
Thermalization" Workshop in Vienna, Austria in August 2005, directly following
the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop
(Vienna August 2005) Proceeding
Centrality Dependence of the High p_T Charged Hadron Suppression in Au+Au collisions at sqrt(s_NN) = 130 GeV
PHENIX has measured the centrality dependence of charged hadron p_T spectra
from central Au+Au collisions at sqrt(s_NN)=130 GeV. The truncated mean p_T
decreases with centrality for p_T > 2 GeV/c, indicating an apparent reduction
of the contribution from hard scattering to high p_T hadron production. For
central collisions the yield at high p_T is shown to be suppressed compared to
binary nucleon-nucleon collision scaling of p+p data. This suppression is
monotonically increasing with centrality, but most of the change occurs below
30% centrality, i.e. for collisions with less than about 140 participating
nucleons. The observed p_T and centrality dependence is consistent with the
particle production predicted by models including hard scattering and
subsequent energy loss of the scattered partons in the dense matter created in
the collisions.Comment: 7 pages text, LaTeX, 6 figures, 2 tables, 307 authors, resubmitted to
Phys. Lett. B. Revised to address referee concerns. Plain text data tables
for the points plotted in figures for this and previous PHENIX publications
are publicly available at
http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm
Single Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV
The invariant differential cross section for inclusive electron production in
p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment
at the Relativistic Heavy Ion Collider over the transverse momentum range $0.4
<= p_T <= 5.0 GeV/c at midrapidity (eta <= 0.35). The contribution to the
inclusive electron spectrum from semileptonic decays of hadrons carrying heavy
flavor, i.e. charm quarks or, at high p_T, bottom quarks, is determined via
three independent methods. The resulting electron spectrum from heavy flavor
decays is compared to recent leading and next-to-leading order perturbative QCD
calculations. The total cross section of charm quark-antiquark pair production
is determined as sigma_(c c^bar) = 0.92 +/- 0.15 (stat.) +- 0.54 (sys.) mb.Comment: 329 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
- …