505 research outputs found
Magnetic Phase Transitions in the double spin-chains compound
We report high-resolution x-ray diffraction, muon-spin-rotation spectroscopic
and specific heat measurements in the double spin-chains compound . The x-ray diffraction results show that the crystal structure of
~is orthorhombic down to T=10K. Anisotropic line-broadening of
the diffraction peaks is observed, indicating disorder along the spin chains.
Muon spin relaxation and specific heat measurements show that
\~undergoes a phase transition to a magnetic ordered state at .
The specific heat data exhibits a second -like peak at , which increases with increasing magnetic field similarly way to
that found in spin-ladder compounds.Comment: 6 pages, 6 fifures, to appear in Physica
Path Integral Description of a Semiclassical Su-Schrieffer-Heeger Model
The electron motion along a chain is described by a continuum version of the
Su-Schrieffer-Heeger Hamiltonian in which phonon fields and electronic
coordinates are mapped onto the time scale. The path integral formalism allows
us to derive the non local source action for the particle interacting with the
oscillators bath. The method can be applied for any value of the {\it e-ph}
coupling. The path integral dependence on the model parameters has been
analysed by computing the partition function and some thermodynamical
properties from up to room temperature. A peculiar upturn in the low
temperature {\it heat capacity over temperature} ratio (pointing to a glassy
like behavior) has been ascribed to the time dependent electronic hopping along
the chain
Mass Renormalization in the Su-Schrieffer-Heeger Model
This study of the one dimensional Su-Schrieffer-Heeger model in a weak
coupling perturbative regime points out the effective mass behavior as a
function of the adiabatic parameter , is the
zone boundary phonon energy and is the electron band hopping integral.
Computation of low order diagrams shows that two phonons scattering processes
become appreciable in the intermediate regime in which zone boundary phonons
energetically compete with band electrons. Consistently, in the intermediate
(and also moderately antiadiabatic) range the relevant mass renormalization
signals the onset of a polaronic crossover whereas the electrons are
essentially undressed in the fully adiabatic and antiadiabatic systems. The
effective mass is roughly twice as much the bare band value in the intermediate
regime while an abrupt increase (mainly related to the peculiar 1D dispersion
relations) is obtained at .Comment: To be published in Phys.Rev.B - 3 figure
Tomonaga-Luttinger parameters for quantum wires
The low-energy properties of a homogeneous one-dimensional electron system
are completely specified by two Tomonaga-Luttinger parameters and
. In this paper we discuss microscopic estimates of the values of
these parameters in semiconductor quantum wires that exploit their relationship
to thermodynamic properties. Motivated by the recognized similarity between
correlations in the ground state of a one-dimensional electron liquid and
correlations in a Wigner crystal, we evaluate these thermodynamic quantities in
a self-consistent Hartree-Fock approximation. According to our calculations,
the Hartree-Fock approximation ground state is a Wigner crystal at all electron
densities and has antiferromagnetic order that gradually evolves from
spin-density-wave to localized in character as the density is lowered. Our
results for are in good agreement with weak-coupling perturbative
estimates at high densities, but deviate strongly at low
densities, especially when the electron-electron interaction is screened at
long distances. vanishes at small carrier density
whereas we conjecture that when , implying that
should pass through a minimum at an intermediate density.
Observation of such a non-monotonic dependence on particle density would allow
to measure the range of the microscopic interaction. In the spin sector we find
that the spin velocity decreases with increasing interaction strength or
decreasing . Strong correlation effects make it difficult to obtain fully
consistent estimates of from Hartree-Fock calculations. We
conjecture that v_{\sigma}/\vf\propto n/V_0 in the limit where
is the interaction strength.Comment: RevTeX, 23 pages, 8 figures include
A new method for detection of induced mutations in wheat
Contains fulltext :
141188.pdf (preprint version ) (Open Access
Phantom with Born-Infield type Lagrangian
Recent analysis of the observation data indicates that the equation of state
of the dark energy might be smaller than -1, which leads to the introduction of
phantom models featured by its negative kinetic energy to account for the
regime of equation of state . In this paper, we generalize the idea to
the Born-Infield type Lagrangian with negative kinetic energy term and give the
condition for the potential, under which the late time attractor solution
exists and also analyze a viable cosmological model in such a scheme.Comment: 13 pages, 6 figures, Reference updated, the final version will be
published in Phys. Rev.
Cosmological Dynamics of Phantom Field
We study the general features of the dynamics of the phantom field in the
cosmological context. In the case of inverse coshyperbolic potential, we
demonstrate that the phantom field can successfully drive the observed current
accelerated expansion of the universe with the equation of state parameter
. The de-Sitter universe turns out to be the late time attractor
of the model. The main features of the dynamics are independent of the initial
conditions and the parameters of the model. The model fits the supernova data
very well, allowing for at 95 % confidence level.Comment: Typos corrected. Some clarifications and references added. To appear
in Physical Review
A Coulomb gas approach to the anisotropic one-dimensional Kondo lattice model at arbitrary filling
We establish a mapping of a general spin-fermion system in one dimension into
a classical generalized Coulomb gas. This mapping allows a renormalization
group treatment of the anisotropic Kondo chain both at and away from
half-filling. We find that the phase diagram contains regions of paramagnetism,
partial and full ferromagnetic order. We also use the method to analyze the
phases of the Ising-Kondo chain.Comment: 19 pages, 9 figure
Crossovers in Unitary Fermi Systems
Universality and crossover is described for attractive and repulsive
interactions where, respectively, the BCS-BEC crossover takes place and a
ferromagnetic phase transition is claimed. Crossovers are also described for
optical lattices and multicomponent systems. The crossovers, universal
parameters and phase transitions are described within the Leggett and NSR
models and calculated in detail within the Jastrow-Slater approximation. The
physics of ultracold Fermi atoms is applied to neutron, nuclear and quark
matter, nuclei and electrons in solids whenever possible. Specifically, the
differences between optical lattices and cuprates is discussed w.r.t.
antiferromagnetic, d-wave superfluid phases and phase separation.Comment: 50 pages, 15 figures. Contribution to Lecture Notes in Physics
"BCS-BEC crossover and the Unitary Fermi Gas" edited by W. Zwerge
Fitting the integrated Spectral Energy Distributions of Galaxies
Fitting the spectral energy distributions (SEDs) of galaxies is an almost
universally used technique that has matured significantly in the last decade.
Model predictions and fitting procedures have improved significantly over this
time, attempting to keep up with the vastly increased volume and quality of
available data. We review here the field of SED fitting, describing the
modelling of ultraviolet to infrared galaxy SEDs, the creation of
multiwavelength data sets, and the methods used to fit model SEDs to observed
galaxy data sets. We touch upon the achievements and challenges in the major
ingredients of SED fitting, with a special emphasis on describing the interplay
between the quality of the available data, the quality of the available models,
and the best fitting technique to use in order to obtain a realistic
measurement as well as realistic uncertainties. We conclude that SED fitting
can be used effectively to derive a range of physical properties of galaxies,
such as redshift, stellar masses, star formation rates, dust masses, and
metallicities, with care taken not to over-interpret the available data. Yet
there still exist many issues such as estimating the age of the oldest stars in
a galaxy, finer details ofdust properties and dust-star geometry, and the
influences of poorly understood, luminous stellar types and phases. The
challenge for the coming years will be to improve both the models and the
observational data sets to resolve these uncertainties. The present review will
be made available on an interactive, moderated web page (sedfitting.org), where
the community can access and change the text. The intention is to expand the
text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics &
Space Scienc
- âŠ