580 research outputs found
Exact solution of the trigonometric vertex model with non-diagonal open boundaries
The trigonometric vertex model with {\it generic
non-diagonal} boundaries is studied. The double-row transfer matrix of the
model is diagonalized by algebraic Bethe ansatz method in terms of the
intertwiner and the corresponding face-vertex relation. The eigenvalues and the
corresponding Bethe ansatz equations are obtained.Comment: Latex file, 25 pages; V2: minor typos corrected, the version appears
in JHE
Critical exponents of a multicomponent anisotropic t-J model in one dimension
A recently presented anisotropic generalization of the multicomponent
supersymmetric model in one dimension is investigated. This model of
fermions with general spin- is solved by Bethe ansatz for the ground state
and the low-lying excitations. Due to the anisotropy of the interaction the
model possesses massive modes and one single gapless excitation. The
physical properties indicate the existence of Cooper-type multiplets of
fermions with finite binding energy. The critical behaviour is described by a
conformal field theory with continuously varying exponents depending on
the particle density. There are two distinct regimes of the phase diagram with
dominating density-density and multiplet-multiplet correlations, respectively.
The effective mass of the charge carriers is calculated. In comparison to the
limit of isotropic interactions the mass is strongly enhanced in general.Comment: 10 pages, 3 Postscript figures appended as uuencoded compressed
tar-file to appear in Z. Phys. B, preprint Cologne-94-474
An Exact Diagonalization Demonstration of Incommensurability and Rigid Band Filling for N Holes in the t-J Model
We have calculated S(q) and the single particle distribution function
for N holes in the t - J model on a non--square sqrt{8} X sqrt{32} 16--site
lattice with periodic boundary conditions; we justify the use of this lattice
in compariosn to those of having the full square symmetry of the bulk. This new
cluster has a high density of vec k points along the diagonal of reciprocal
space, viz. along k = (k,k). The results clearly demonstrate that when the
single hole problem has a ground state with a system momentum of vec k =
(pi/2,pi/2), the resulting ground state for N holes involves a shift of the
peak of the system's structure factor away from the antiferromagnetic state.
This shift effectively increases continuously with N. When the single hole
problem has a ground state with a momentum that is not equal to k =
(pi/2,pi/2), then the above--mentioned incommensurability for N holes is not
found. The results for the incommensurate ground states can be understood in
terms of rigid--band filling: the effective occupation of the single hole k =
(pi/2,pi/2) states is demonstrated by the evaluation of the single particle
momentum distribution function . Unlike many previous studies, we show
that for the many hole ground state the occupied momentum states are indeed k =
(+/- pi/2,+/- pi/2) states.Comment: Revtex 3.0; 23 pages, 1 table, and 13 figures, all include
Determinant Representations of Correlation Functions for the Supersymmetric t-J Model
Working in the -basis provided by the factorizing -matrix, the scalar
products of Bethe states for the supersymmetric t-J model are represented by
determinants. By means of these results, we obtain determinant representations
of correlation functions for the model.Comment: Latex File, 41 pages, no figure; V2: minor typos corrected, V3: This
version will appear in Commun. Math. Phy
Onset of magnetism in B2 transition metals aluminides
Ab initio calculation results for the electronic structure of disordered bcc
Fe(x)Al(1-x) (0.4<x<0.75), Co(x)Al(1-x) and Ni(x)Al(1-x) (x=0.4; 0.5; 0.6)
alloys near the 1:1 stoichiometry, as well as of the ordered B2 (FeAl, CoAl,
NiAl) phases with point defects are presented. The calculations were performed
using the coherent potential approximation within the Korringa-Kohn-Rostoker
method (KKR-CPA) for the disordered case and the tight-binding linear
muffin-tin orbital (TB-LMTO) method for the intermetallic compounds. We studied
in particular the onset of magnetism in Fe-Al and Co-Al systems as a function
of the defect structure. We found the appearance of large local magnetic
moments associated with the transition metal (TM) antisite defect in FeAl and
CoAl compounds, in agreement with the experimental findings. Moreover, we found
that any vacancies on both sublattices enhance the magnetic moments via
reducing the charge transfer to a TM atom. Disordered Fe-Al alloys are
ferromagnetically ordered for the whole range of composition studied, whereas
Co-Al becomes magnetic only for Co concentration >0.5.Comment: 11 pages with 9 embedded postscript figures, to be published in
Phys.Rev.
Point-contact spectroscopy of the nickel borocarbide superconductor YNi2B2C in the normal and superconducting state
Point-contact (PC) spectroscopy measurements of YNi2B2C single crystals in
the normal and superconducting (SC) state (T_c=15.4K) for the main
crystallographic directions are reported. The PC study reveals the
electron-phonon interaction (EPI) spectral function with dominant phonon
maximum around 12 meV and further weak structures (hump or kink) at higher
energy at about 50 meV. No "soft" modes below 12 meV are resolved in the normal
state. The PC EPI spectra are qualitatively similar for the different
directions. Contrary, directional study of the SC gap results in
\Delta_[100]=1.5 meV for the a direction and \Delta_[001]=2.3 meV along the c
axis; however the critical temperature T_c in PC in all cases is near to that
in the bulk sample. The value 2\Delta_[001]/kT_c=3.6 is close to the BCS value
of 3.52, and the temperature dependence \Delta_[001](T) is BCS-like, while the
for small gap \Delta_[100](T) is below BCS behavior at T>T_c/2 similarly as in
the two-gap superconductor MgB2. It is supposed that the directional variation
\Delta can be attributed to a multiband nature of the SC state in YNi2B2C.Comment: 9 pages, 10 figures, to be published in a special issue of J. Low
Temp. Phys. in honour of Prof. H. von Loehneyse
Amplitude measurements of Faraday waves
A light reflection technique is used to measure quantitatively the surface
elevation of Faraday waves. The performed measurements cover a wide parameter
range of driving frequencies and sample viscosities. In the capillary wave
regime the bifurcation diagrams exhibit a frequency independent scaling
proportional to the wavelength. We also provide numerical simulations of the
full Navier-Stokes equations, which are in quantitative agreement up to
supercritical drive amplitudes of 20%. The validity of an existing perturbation
analysis is found to be limited to 2.5% overcriticaly.Comment: 7 figure
Determinant representation for some transition probabilities in the TASEP with second class particles
We study the transition probabilities for the totally asymmetric simple
exclusion process (TASEP) on the infinite integer lattice with a finite, but
arbitrary number of first and second class particles. Using the Bethe ansatz we
present an explicit expression of these quantities in terms of the Bethe wave
function. In a next step it is proved rigorously that this expression can be
written in a compact determinantal form for the case where the order of the
first and second class particles does not change in time. An independent
geometrical approach provides insight into these results and enables us to
generalize the determinantal solution to the multi-class TASEP.Comment: Minor revision; journal reference adde
A Study of Cosmic Ray Secondaries Induced by the Mir Space Station Using AMS-01
The Alpha Magnetic Spectrometer (AMS-02) is a high energy particle physics
experiment that will study cosmic rays in the to range and will be installed on the International Space Station
(ISS) for at least 3 years. A first version of AMS-02, AMS-01, flew aboard the
space shuttle \emph{Discovery} from June 2 to June 12, 1998, and collected
cosmic ray triggers. Part of the \emph{Mir} space station was within the
AMS-01 field of view during the four day \emph{Mir} docking phase of this
flight. We have reconstructed an image of this part of the \emph{Mir} space
station using secondary and emissions from primary cosmic rays
interacting with \emph{Mir}. This is the first time this reconstruction was
performed in AMS-01, and it is important for understanding potential
backgrounds during the 3 year AMS-02 mission.Comment: To be submitted to NIM B Added material requested by referee. Minor
stylistic and grammer change
Protons in near earth orbit
The proton spectrum in the kinetic energy range 0.1 to 200 GeV was measured
by the Alpha Magnetic Spectrometer (AMS) during space shuttle flight STS-91 at
an altitude of 380 km. Above the geomagnetic cutoff the observed spectrum is
parameterized by a power law. Below the geomagnetic cutoff a substantial second
spectrum was observed concentrated at equatorial latitudes with a flux ~ 70
m^-2 sec^-1 sr^-1. Most of these second spectrum protons follow a complicated
trajectory and originate from a restricted geographic region.Comment: 19 pages, Latex, 7 .eps figure
- …
