696 research outputs found

    ‘Differentiation and the European Central Bank’: a bulwark against (differentiated) disintegration?

    Get PDF
    As the guardian of the euro, the European Central Bank (ECB) manages what has long been considered the prime example of differentiated integration (Verhelst 2013; Schimmelfennig 2014). Originally known by other names, such as ‘variable geometry’ or ‘two-speed Europe’, differentiation arose when the Maastricht Treaty established Europe’s Economic and Monetary Union (EMU) with two member states (Denmark and the United Kingdom) receiving formal opt-outs (Thygesen 1999). Importantly, their autonomous decisions not to join the single cur-rency did not reflect a lack of capacity to meet requirements for joining. Rather this choice reflected deep-seated concerns among political elites and electorates about losing sovereignty in an area of core state powers. The 1992 and 2000 referendums in Denmark and the 2003 refer-endum in Sweden offer the clearest examples of this dynamic (Leuffen et al. 2013: 149).The ECB has overseen both a significant widening and deepening of integration in its domain during the two decades since its birth. While it was confronted with the threat of disintegration in the context of the euro area crisis, it has played its part in successfully averting the scenario of one (or more) member states leaving the euro area (Spiegel 2014; Schoeller 2018). At the height of the Greek sovereign debt crisis, there was widespread concern that the departure of one member of the euro area could lead to a domino effect – thereby calling into question the long-term viability of the single currency itself (Chibber 2011; Kutter 2014). From a neofunctionalist per-spective, one may argue that a supranational institution, such as the ECB, would seek to advance European integration as a supranational solution to transnational problems. The euro crisis offered a window of opportunity for pursuing this goal as the neofunctionalist logic suggests (Haas 1958; Schimmelfennig 2012; Hodson 2013; Niemann and Ioannou 2015).EUROSEM Jean Monnet Network 600110-EPP-1-2018-CA-EPPJMO-NetworkInstitutions, Decisions and Collective Behaviou

    Continuous measurements of greenhouse gases and atmospheric oxygen at the Namib Desert atmospheric observatory

    Get PDF
    A new coastal background site has been established for observations of greenhouse gases (GHGs) in the central Namib Desert at Gobabeb, Namibia. The location of the site was chosen to provide observations for a data-poor region in the global sampling network for GHGs. Semi-automated continuous measurements of carbon dioxide, methane, nitrous oxide, carbon monoxide, atmospheric oxygen, and basic meteorology are made at a height of 21 m a.g.l., 50 km from the coast at the northern border of the Namib Sand Sea. Atmospheric oxygen is measured with a differential fuel cell analyzer (DFCA). Carbon dioxide and methane are measured with an early-model cavity ring-down spectrometer (CRDS); nitrous oxide and carbon monoxide are measured with an off-axis integrated cavity output spectrometer (OA-ICOS). Instrument-specific water corrections are employed for both the CRDS and OA-ICOS instruments in lieu of drying. The performance and measurement uncertainties are discussed in detail. As the station is located in a remote desert environment, there are some particular challenges, namely fine dust, high diurnal temperature variability, and minimal infrastructure. The gas handling system and calibration scheme were tailored to best fit the conditions of the site. The CRDS and DFCA provide data of acceptable quality when base requirements for operation are met, specifically adequate temperature control in the laboratory and regular supply of electricity. In the case of the OA-ICOS instrument, performance is significantly improved through the implementation of a drift correction through frequent measurements of a reference cylinder

    A Novel Method for High-Dimensional Anatomical Mapping of Extra-Axial Cerebrospinal Fluid: Application to the Infant Brain

    Get PDF
    Cerebrospinal fluid (CSF) plays an essential role in early postnatal brain development. Extra-axial CSF (EA-CSF) volume, which is characterized by CSF in the subarachnoid space surrounding the brain, is a promising marker in the early detection of young children at risk for neurodevelopmental disorders. Previous studies have focused on global EA-CSF volume across the entire dorsal extent of the brain, and not regionally-specific EA-CSF measurements, because no tools were previously available for extracting local EA-CSF measures suitable for localized cortical surface analysis. In this paper, we propose a novel framework for the localized, cortical surface-based analysis of EA-CSF. The proposed processing framework combines probabilistic brain tissue segmentation, cortical surface reconstruction, and streamline-based local EA-CSF quantification. The quantitative analysis of local EA-CSF was applied to a dataset of typically developing infants with longitudinal MRI scans from 6 to 24 months of age. There was a high degree of consistency in the spatial patterns of local EA-CSF across age using the proposed methods. Statistical analysis of local EA-CSF revealed several novel findings: several regions of the cerebral cortex showed reductions in EA-CSF from 6 to 24 months of age, and specific regions showed higher local EA-CSF in males compared to females. These age-, sex-, and anatomically-specific patterns of local EA-CSF would not have been observed if only a global EA-CSF measure were utilized. The proposed methods are integrated into a freely available, open-source, cross-platform, user-friendly software tool, allowing neuroimaging labs to quantify local extra-axial CSF in their neuroimaging studies to investigate its role in typical and atypical brain development

    Density Matrix Renormalisation Group Approach to the Massive Schwinger Model

    Get PDF
    The massive Schwinger model is studied, using a density matrix renormalisation group approach to the staggered lattice Hamiltonian version of the model. Lattice sizes up to 256 sites are calculated, and the estimates in the continuum limit are almost two orders of magnitude more accurate than previous calculations. Coleman's picture of `half-asymptotic' particles at background field theta = pi is confirmed. The predicted phase transition at finite fermion mass (m/g) is accurately located, and demonstrated to belong in the 2D Ising universality class.Comment: 38 pages, 18 figures, submitted to PR

    Endogenous Risks and Learning in Climate Change Decision Analysis

    Get PDF
    We analyze the effects of risks and learning on climate change decisions. A two-stage, dynamic, climate change stabilization problem is formulated. The explicit incorporation of ex-post learning induces risk aversion among ex-ante decisions, which is characterized in linear models by VaR- and CVaR-type risk measures. Combined with explicit introduction of "safety" constraints, it creates a "hit-or-miss" type decision-making situation and shows that, even in linear models, learning may lead to either less-or more restrictive ex-ante emission reductions. We analyze stylized elements of the model in order to identify the key factors driving outcomes, in particular, the critical role of quantiles of probability distributions characterizing key uncertainties

    Walking, Gross Motor Development, and Brain Functional Connectivity in Infants and Toddlers

    Get PDF
    Infant gross motor development is vital to adaptive function and predictive of both cognitive outcomes and neurodevelopmental disorders. However, little is known about neural systems underlying the emergence of walking and general gross motor abilities. Using resting state fcMRI, we identified functional brain networks associated with walking and gross motor scores in a mixed cross-sectional and longitudinal cohort of infants at high and low risk for autism spectrum disorder, who represent a dimensionally distributed range of motor function. At age 12 months, functional connectivity of motor and default mode networks was correlated with walking, whereas dorsal attention and posterior cingulo-opercular networks were implicated at age 24 months. Analyses of general gross motor function also revealed involvement of motor and default mode networks at 12 and 24 months, with dorsal attention, cingulo-opercular, frontoparietal, and subcortical networks additionally implicated at 24 months. These findings suggest that changes in network-level brain-behavior relationships underlie the emergence and consolidation of walking and gross motor abilities in the toddler period. This initial description of network substrates of early gross motor development may inform hypotheses regarding neural systems contributing to typical and atypical motor outcomes, as well as neurodevelopmental disorders associated with motor dysfunction
    corecore